
oyaji (20170810-501DAE64)

oyaji (20170810-501DAE64)

Title of English-language original: Learn you a Haskell for Great Good!
ISBN 978-1-59327-283-8, published by No Starch Press, Inc.
Copyright ©2011 by Miran Lipovača.

Japanese-language edition copyright ©2012 by Ohmsha, Ltd.

All rights reserved. No part of this book may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopying, recording or by any
information storage retrieval system, without permission from No Starch Press, Inc.

本書を発行するにあたって、内容に誤りのないようできる限りの注意を払いましたが、本書の内容
を適用した結果生じたこと、また、適用できなかった結果について、著者、出版社とも一切の責任を
負いませんのでご了承ください。

本書に掲載されている会社名・製品名は一般に各社の登録商標または商標です。

本書は、「著作権法」によって、著作権等の権利が保護されている著作物です。本書の複製権・翻
訳権・上映権・譲渡権・公衆送信権（送信可能化権を含む）は著作権者が保有しています。本書の全
部または一部につき、無断で転載、複写複製、電子的装置への入力等をされると、著作権等の侵害と
なる場合がありますので、ご注意ください。
本書の無断複写は、著作権法上の制限事項を除き、禁じられています。本書の複写複製を希望され
る場合は、そのつど事前に下記へ連絡して許諾を得てください。s オーム社開発部「すごいHaskellたのしく学ぼう！」係宛、E-mail（kaihatu@ohmsha.co.jp）

または書状、FAX（03-3293-2825）にて

oyaji (20170810-501DAE64)

訳者序文

初めて本書の原著（の元となったWebページ版）を読んだときは、驚きでし
た。プログラミングの入門というものは、往々にして次のいずれかになりがちで
す。教科書めいた堅苦しい文章になるか、はたまた細かい部分を誤魔化して分
かったような分からないようなものになるか。本書はいかにも後者であるかの
ような雰囲気でした。すなわち、まず “Learn You a Haskell for Great Good!”
というよく意味の分からないタイトルに始まり、全編にわたって豊富に挿入さ
れたファンシーなイラスト、ちりばめられた微妙に分かりづらいギャグやパロ
ディ、いかにも初心者向け書籍のテンプレートを踏襲しているかのように見えま
した。しかし、読み進めるうちに、これはもしかしたらそうではない、もっとす
ごい本なのではないかという思いを抱き始め、読み終わるころにはそれは確信へ
と変わっていました。愉快なイラストに軽妙な語り口、強烈に初学者を意識した
体裁とは裏腹に、しっかりと Haskellのキモが押さえられた内容になっており、
難しさを感じさせないままのらりくらりとラストまで突き進んでしまいます。誤
解を招くような書き方かもしれませんが、易しく書かれている割にはしっかりし
ている、というわけではありません。入門書の括りとして見ても、この上ない完
成度なのです。ここまで Haskell でのプログラミング作法、あるいはベストプ
ラクティスがしっかりと語られた書籍は、少なくとも日本語で読めるものでは見
当たりません。特にファンクター、アプリカティブファンクター、それとモナド
との関係、非常に充実したモナドの解説、さらには Zipperにまで触れられてい
るところは特筆に値します。Haskellに対する何やらよく分からない、難しそう
だというイメージが払拭されるのではないか。読んでいるときから、これは日本
語でも読めるようになるべきだと強く思っていました。その仕事を、ほかでもな
い自分の手によって行えたことはこの上のない幸せです。
本書はすべての Haskell 入門者に読んでいただきたい本です。あるいは、過

去に Haskell を勉強しようとしたけれども挫折した、はたまた他の入門書をひ
ととおり読んではみたものの今ひとつよく分からない、モナドが使いこなせない
などの方にもおすすめいたします。「たのしく」読み進めているうちに、いつし
か Haskellの「すごい」ところが習得できていることでしょう！
最後に、翻訳にあたってお世話になった方々に感謝申し上げます。原著者と

の交渉、組版、校正などの多くの作業、そして遅々（延々）として進まない我々
の翻訳作業を根気よく見守っていただいたオーム社の鹿野さん、並びに数多く
の有益なフィードバックをいただいたレビュアーの、山本和彦さん、鈴木浩一
さん、豊福親信さん、尾崎竜史さん、山下伸夫さん、石井大海さん、小久保祐介

iii

oyaji (20170810-501DAE64)

iv 訳者序文

さん、島崎清山さん、木戸崇裕さん、九岡佑介さん、竹田光孝さん、藤村大介さ
ん、fetastein さん、情野吉紀さん、松井楽徳さん、樋村隆弘さん、川又龍一さ
ん、@HIROCASTERさん、西村瑞希さんに改めて感謝申し上げます。

2012年 5月
訳者しるす

oyaji (20170810-501DAE64)

イントロダクション

Haskellはおもしろい。以上！

この本は命令型プログラミング言語（C++や Java、Pythonなど）でのプログ
ラミング経験者で、今 Haskellを勉強してみたいという人を対象にしています。
でも、大げさなプログラミング経験がなくても （この本を手に取ってくれた）
あなたのような賢い人はきっとこの本を理解して Haskell を習得できることで
しょう。

Haskell に対する僕の最初の印象は、何だかとても変わった言語だなという
ものでした。でも最初のハードルを越えた後は、スムーズに頭に入ってきまし
た。Haskell の第一印象が奇妙なものだったとしても、あきらめないでくださ
い。Haskellを学ぶのは、もう一度はじめからプログラミングを始めるようなも
のです。楽しくて、今までとは違った考え方をさせてくれます。

NOTE もしも本当に行き詰まったら、freenodeネットワークの IRCチャンネル #haskell

で質問をするとよいでしょう。素敵で寛容な、そして理解力のある人たちが答えてく
れます。彼らは Haskell初心者にとってとても良い情報源です。

で、Haskellって何なの？
Haskellは純粋関数型プログラミング言語です。
命令型プログラミング言語では、命令の並びをコ

ンピュータに与えて、それを実行します。命令を実
行している間、コンピュータの状態は変更されてい
きます。例えば、変数 aが 5に設定された後に、ど
こか別のコードが aの値を変更する可能性がありま
す。また、 for ループや while ループのような繰
り返し実行のための構文があります。
純粋関数型プログラミングは違います。コンピュータに何をするかは伝えま
せん。何であるかを伝えるのです。例えば、「ある数の階乗とは 1からその数ま
での積である」というような定義をコンピュータに伝えます。あるいは、「数の
リストの和とは先頭の数と残りのリストの和を足し合わせたものである」など
と。これらはどちらも関数として書くことができます。
関数型プログラミングでは、一度変数の値を設定すると、後でそれを別の値に
変更することはできません。 a が 5 だと言ったのなら、心変わりしてやっぱり

v

oyaji (20170810-501DAE64)

vi イントロダクション

別の値です、と言うことはできないのです。だってあなたは a は 5 だって言っ
たじゃないですか（あなたは嘘をつくような人ですか？）。
純粋関数型言語では、関数は副作用を持ちません。関数にできることは、何か
を計算してその結果を返すことだけです。これは最初のうちは制約に思うかも
しれませんが、実はとてもうれしい効能があります。 関数が同じ引数で 2回呼
ばれたら、これらは同じ値を返すことが保証されます。この性質は参照透明性と
呼ばれています。そのおかげで、プログラマは関数の正しさを簡単に推測（時に
は証明さえ）できます。正しいと分かっている単純な関数を組み合わせて、より
複雑な正しい関数を組み立てられるのです。

Haskellは怠け者です。特にそう
しろと言われた場合を除いては、結
果が必要になるまで関数を実行し
ないのです。この振る舞いは、専門
用語では遅延評価といいます。これ
は、Haskellが参照透明だから許さ
れることです。関数の結果が与えら
れた引数だけに依存しているのな
ら、それがいつ計算されるかを気に
する必要はありません。怠け者言語
Haskellはこの事実を利用して、計
算をそれが必要になるギリギリまで
引き伸ばします。いよいよ結果を表示しなければならないとなると、Haskellは
要求されたものを表示するために必要な最小限の計算を行います。遅延評価は、
見かけ上無限の大きさのデータを扱うことを可能にします。実際に画面に表示
するデータのみが計算されるからです。

Haskell の遅延性の例を見てみましょう。数のリスト xs = [1,2,3,4,5,

6,7,8] と、すべての要素を 2倍にした新しいリストを返す関数 doubleMeがあ
ります。リストの要素を 8倍したいなら、次のようなコードでできます。

doubleMe(doubleMe(doubleMe(xs)))

命令型言語では、まずリストを関数に渡し、コピーを作ってからそれを返すで
しょう。それからさらにもう 2回、リストを関数に渡し、コピーを作り、結果を
返すというのを繰り返すでしょう。
遅延評価な言語では、リストに対して doubleMeを呼び出しても、結果を表示

するようにとの要求がなければ、プログラムは「分かってるよ、後でやるよ！」
と言うだけで実際には何もしません。いざ、結果を見せるように言われると、そ

oyaji (20170810-501DAE64)

で、Haskellって何なの？ vii

こで初めて 1番目の doubleMeが 2番目の doubleMeを呼び出して、すぐに結果
をくれと言います。すると 2番目の doubleMeが同じことを 3番目の doubleMe

に対して行い、3番目の doubleMeはしぶしぶ 1を 2倍したもの、つまり 2を返
します。2番目の doubleMeはそれを受け取り、1番目の doubleMeに 4を返し
ます。1番目の doubleMeはこの結果を 2倍して、最終的な結果として得られる
リストにおける最初の要素は 8ですよと教えてくれます。Haskellの遅延性のお
かげで、 doubleMeを 3重に呼び出しても、リストは、要求があったときにただ
一度だけ走査されるのです。

Haskell は静的型付け言語です。これはどの
コード片が数で、どれが文字列で、といったこ
とをコンパイラがプログラムのコンパイル時に
すべて知っているということです。静的型付け
は、コンパイル時にたくさんのエラーの要因を
捕まえてくれます。例えば、数と文字列を足し
合わせようとしたら、コンパイラは、そんなこ
とできないよって泣きごとを言うでしょう。

Haskell は型推論を持つとても優れた型シス
テムを採用しています。プログラマがすべての
コード片に対して明示的に型を書かなくても、Haskellの賢い型システムは自分
でそれを推論できるのです。例えば a = 5 + 4というコードがあったとします。
ここであなたは a が数であると Haskell に教えてあげる必要はありません―――
コンパイラは型を自力で導き出すことができます。型推論のおかげで、汎用性の
高いコードを書くのが簡単になります。 2つの引数をとり足し算する関数を書
いて、 それらの型を明示的に指定しないでおくと、数のように振る舞う任意の
引数に対して動作する関数の出来上がりです。

Haskellはエレガントで簡潔です。高度な概念をふんだんに用いているので、
通常 Haskell のプログラムは、命令型で書かれた同等のものと比べて短くなり
ます。短いプログラムは保守しやすく、含まれるバグも少なくなります。

Haskell は本当に頭の切れる（博士号を持つ）人たちによって作られていま
す。Haskellは、最高の言語を設計するための、研究者によって構成された委員
会により、1987年から開発されています。Haskell 言語の仕様の最新の安定版
（The Haskell Report）は 2010年に出版されました。

oyaji (20170810-501DAE64)

viii イントロダクション

Haskellの世界に飛び込むのに必要なもの
Haskellを始めるのに必要なのはテキストエディタとHaskellコンパイラだけ

です。テキストエディタはお気に入りのものを使ってください。Haskellのコン
パイラで最も広く使われているのは The Glasgow Haskell Compiler（GHC）
です。この本でも GHCを利用します。
必要なものを手っ取り早く揃えるには、Haskell Platformをダウンロードす

るのがベストです。Haskell Platformには GHCコンパイラだけでなく、便利
なHaskellのライブラリのセットも同梱されています！ Haskell Platformを手
に入れるには、http://hackage.haskell.org/platform/に行って、利用して
いる OS向けの指示に従ってください。

GHCはHaskellのソースコード（通常は .hsという拡張子）をコンパイルで
きるのに加えて、対話モードも備えています。対話環境でスクリプトに定義され
た関数をロードして、それを呼び出し、結果を直接見ることができます。特に学
習時には、スクリプトを変更するたびにコンパイルするより、対話モードを利用
するのがお手軽です。

Haskell Platformをインストールしたなら、（LinuxかMac OS Xなら）ター
ミナルウインドウを開きましょう。Windows の場合はコマンドプロンプトか
PowerShellを開きます。それから ghciとタイプして、ENTER を押すと、対話
モードが起動します（GHCiプログラムが見つからない場合は、いったん再起動
してみてください）。対話モードから抜け、ターミナルに戻るには、 :quit（ま
たは :q）とタイプして、ENTERを押してください。
myfunctions.hs というスクリプトに関数を定義したならば、 :l

myfunctions とタイプすることで、それを GHCi にロードできます
（myfunctions.hsは GHCiを起動したフォルダと同じ場所に置いてください）。

.hsスクリプトを変更した場合は、 :l myfunctionsを実行して同じファイ
ルをロードし直すか、 :rを実行して現在のスクリプトをリロードします†1。僕
の定番のワークフローは、関数を .hsファイルに定義して、GHCiにそれをロー
ドしていじくり回し、ファイルを変更する、という繰り返しです。この本でもこ
のやり方を使っていきます。

謝辞
修正、提案、励ましの言葉を送ってくださった皆さんに感謝します。僕を本物

の物書きのようにしてくれた Keith、Sam、Marilynにも感謝します。

†1 ［訳注］コロン（ :）で始まる行は GHCiコマンドと呼ばれ、GHCiに入力すると特別なことが起こりま
す。GHCiコマンドの一覧を調べるには :?と入力してください。なおコマンドは全部打たずに略してもよ
く、複数のコマンドが該当する場合はよく使われるほうのコマンドが実行されます。

http://hackage.haskell.org/platform/

oyaji (20170810-501DAE64)

目次

訳者序文 iii

イントロダクション v

で、Haskellって何なの？ . v

Haskellの世界に飛び込むのに必要なもの . viii

謝辞. viii

第 1章 はじめの第一歩 1

1.1 関数呼び出し . 3

1.2 赤ちゃんの最初の関数. 5

1.3 リスト入門 . 7

1.4 レンジでチン！ . 13

1.5 リスト内包表記 . 15

1.6 タプル . 18

第 2章 型を信じろ！ 23

2.1 明示的な型宣言 . 23

2.2 一般的な Haskellの型 . 25

2.3 型変数 . 26

2.4 型クラス 初級講座 . 27

第 3章 関数の構文 35

3.1 パターンマッチ . 35

3.2 場合分けして、きっちりガード！ . 41

3.3 where?! . 43

3.4 let It Be. 45

3.5 case 式 . 48

第 4章 Hello再帰! 51

4.1 最高に最高！ . 52

4.2 さらにいくつかの再帰関数 . 53

4.3 クイック、ソート！ . 57

4.4 再帰的に考える . 59

ix

oyaji (20170810-501DAE64)

x 目次

第 5章 高階関数 61

5.1 カリー化関数 . 61

5.2 高階実演 . 65

5.3 関数プログラマの道具箱 . 68

5.4 ラムダ式 . 73

5.5 畳み込み、見込みアリ！ . 75

5.6 $ を使った関数適用 . 83

5.7 関数合成 . 84

第 6章 モジュール 89

6.1 モジュールをインポートする . 90

6.2 標準モジュールの関数で問題を解く . 92

6.3 キーから値へのマッピング . 100

6.4 モジュールを作ってみよう . 106

第 7章 型や型クラスを自分で作ろう 111

7.1 新しいデータ型を定義する . 111

7.2 形づくる . 112

7.3 レコード構文 . 117

7.4 型引数 . 120

7.5 インスタンスの自動導出 . 126

7.6 型シノニム . 131

7.7 再帰的なデータ構造 . 136

7.8 型クラス 中級講座 . 142

7.9 Yesと Noの型クラス . 148

7.10 Functor型クラス . 151

7.11 型を司るもの、種類 . 155

第 8章 入出力 159

8.1 不純なものと純粋なものを分離する . 159

8.2 Hello, World! . 160

8.3 I/O アクションどうしをまとめる . 162

8.4 いくつかの便利な I/O関数 . 168

8.5 I/O アクションおさらい . 174

oyaji (20170810-501DAE64)

xi

第 9章 もっと入力、もっと出力 175

9.1 ファイルとストリーム. 175

9.2 ファイルの読み書き . 181

9.3 ToDoリスト . 186

9.4 コマンドライン引数 . 190

9.5 ToDoリストをもっと楽しむ . 192

9.6 ランダム性 . 197

9.7 bytestring . 205

第 10章 関数型問題解決法 211

10.1 逆ポーランド記法電卓 . 211

10.2 ヒースロー空港からロンドンへ . 216

第 11章 ファンクターからアプリカティブファンクターへ 227

11.1 帰ってきたファンクター . 228

11.2 ファンクター則 . 234

11.3 アプリカティブファンクターを使おう . 239

11.4 アプリカティブの便利な関数 . 252

第 12章 モノイド 257

12.1 既存の型を新しい型にくるむ . 257

12.2 Monoid大集合 . 265

12.3 モノイドとの遭遇 . 268

12.4 モノイドで畳み込む . 277

第 13章 モナドがいっぱい 281

13.1 アプリカティブファンクターを強化する . 281

13.2 Maybeから始めるモナド . 283

13.3 Monad型クラス . 286

13.4 綱渡り . 288

13.5 do記法 . 296

13.6 リストモナド . 301

13.7 モナド則 . 309

oyaji (20170810-501DAE64)

xii 目次

第 14章 もうちょっとだけモナド 315

14.1 Writer？ 中の人なんていません！ . 316

14.2 Reader？ それはあなたです！ . 329

14.3 計算の状態の正体 . 332

14.4 Errorを壁に . 340

14.5 便利なモナディック関数特集 . 342

14.6 安全な逆ポーランド記法電卓を作ろう . 352

14.7 モナディック関数の合成 . 355

14.8 モナドを作る . 356

第 15章 Zipper 363

15.1 歩こう . 364

15.2 リストに注目する . 372

15.3 超シンプルなファイルシステム . 374

15.4 足下にご注意 . 378

15.5 読んでくれてありがとう！ . 382

付録 A：マルチバイト文字列処理に関する訳者補足 383

文字コードと text . 383

OverloadedStrings拡張 . 384

ViewPatterns拡張 . 385

付録 B：訳語一覧 387

索引 391

oyaji (20170810-501DAE64)

第1章
はじめの第一歩

もしあなたが、イントロダクションなんて読まないというとんでもない考えの
持ち主なら、今すぐ 1 つ前の章に戻って読んできてください。この本の使い方
や、GHCに関数をロードする方法が書いてあります。
最初に、GHCの対話モードを起動して関数をいくつか呼び出し、Haskellの

基本的な感覚を味わってみましょう。端末を開いて ghciとタイプします。次の
ような挨拶が表示されるでしょう†1。

GHCi, version 6.12.3: http://www.haskell.org/ghc/ :? for help
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
Loading package ffi-1.0 ... linking ... done.
Prelude>

NOTE GHCiのデフォルトのプロンプトは Prelude>ですが、この本の例では ghci>と表記
します。実際の GHCiのプロンプトをこれに合わせるには、GHCi上で :set prompt
 "ghci> "とタイプします。GHCiを起動するたびにタイプするのが面倒なら、ホー
ムディレクトリに.ghciというファイルを作って、その中に :set prompt "ghci> "
と書き込みます。

おめでとう、あなたは今 GHCiの中にいます！ それでは、簡単な計算をやっ
てみましょうか。

ghci> 2 + 15
17
ghci> 49 * 100
4900
ghci> 1892 - 1472
420

†1 ［訳注］原著文中でのGHCのバージョンは 6.12.3だったようですが、翻訳作業時点での Haskell Platform
の最新版（ 2011.4.0.0）に同梱されている GHCのバージョンは 7.0.4です。このバージョンの違いが
実行結果に違いをもたらす箇所には、なるべく訳注を付けてます。GHCの開発速度には目を見張るものが
あります。ぜひ最新版を入れてください！

1

oyaji (20170810-501DAE64)

2 第 1章 はじめの第一歩

ghci> 5 / 2
2.5
ghci>

1つの式の中に複数の演算子がある場合、Haskell
は演算子の優先順位に従って実行します。例えば、
「 *」は「 -」よりも高い優先順位を持っているので、
「 50 * 100 - 4999」は「 (50 * 100) - 4999」と
して解釈されます。
次のように、括弧を使って演算の順序を明示することもできます。

ghci> (50 * 100) - 4999
1
ghci> 50 * 100 - 4999
1
ghci> 50 * (100 - 4999)
-244950

うわーすげえかっこいい（棒読み）―――うん、分かってる。すぐに本当にかっ
こいい例が出てくるから、今はちょっと我慢してね。
注意すべき落とし穴が 1 つあります。それは負の数の扱いです。式の途中に
負の数が出てくるときは、必ず括弧で囲むようにしましょう。例えば、 5 * -3

を GHCi に入力すると文句を言ってきますが、 5 * (-3) なら正しく動いてく
れます。
ブール代数も Haskell では思いのままです。他の多くのプログラミング言語
と同様に、Haskellにも真理値 Trueと False、それから論理積のための演算子
&&と論理和のための演算子 ||、さらに Trueと Falseを反転させる論理否定演
算子 notがあります。

ghci> True && False
False
ghci> True && True
True
ghci> False || True
True
ghci> not False
True
ghci> not (True && True)
False

2 つの値が等しいか等しくないかは、それぞれ演算子 == と /= でテストでき
ます。

ghci> 5 == 5
True
ghci> 1 == 0
False

oyaji (20170810-501DAE64)

1.1 関数呼び出し 3

ghci> 5 /= 5
False
ghci> 5 /= 4
True
ghci> "hello" == "hello"
True

でも！ 値の組み合わせには注意してください。例えば、 5 + "llama"のよう
な式を入力すると、次のようなエラーメッセージが返ってきます。

No instance for (Num [Char])
arising from a use of ‘+’ at <interactive>:1:0-9
Possible fix: add an instance declaration for (Num [Char])
In the expression: 5 + "llama"
In the definition of ‘it’: it = 5 + "llama"

ここで GHCiが言っているのは「 "llama"は数じゃないよ、だからどうやっ
て 5 と足し合わせればいいか分からないよ」というようなことです。 + 演算子
は両辺に数がくることを期待しているのです。
これに対して ==演算子は、比較可能なあらゆる型に対して動作します。ただ
し、両辺の値は同じ型である必要があります。例えば、 True == 5のような式
を入力すると GHCiは困ってしまいます。

NOTE 5 + 4.0は正しい式です。 4.0は整数ではないので、一見型が合わないように見え
ますが、 5は密かにすごいやつで、浮動小数型としても整数型としても振る舞えるの
です。今回の場合 5は、相手の浮動小数値 4.0に合わせた型になります。

型については、後でもう少し詳しく説明します。

1.1 関数呼び出し
気づかなかったかもしれませんが、ここまでの説

明ですでに関数を使っています。例えば、 * は 2
つの数を引数に取り、それらを掛け合わせる関数で
す。関数 *を適用する（あるいは呼び出す）には、
掛け合わせたい 2 つの数で挟みます。このような
関数は中置関数と呼ばれます。
でも、ほとんどの関数は前置関数です。Haskell

で前置関数を呼び出すには、関数名を最初に書い
て、それからスペース、続けて（スペースで区切られた）引数を書きます。例と
して、とてつもなく退屈な Haskellの関数 succを呼び出してみます。

ghci> succ 8
9

oyaji (20170810-501DAE64)

4 第 1章 はじめの第一歩

succ 関数は、「後者（successor）」が明確に定義されているものを何でもい
いから引数として受け取り、その値を返します。整数に対する「後者」は、単に
「次に大きい数」です。
では次に、複数の引数を取る前置関数 minと maxを呼び出してみましょう。

ghci> min 9 10
9
ghci> min 3.4 3.2
3.2
ghci> max 100 101
101

minと max関数はどちらも 2引数の関数で、何らかの順序の付いたもの（数
とかね！）を受け取り、それぞれ小さいほう、または大きいほうを返します。
関数の適用は、すべての演算の中で最も高い優先度を持ちます。つまり、次の

2つの式は等価です。

ghci> succ 9 + max 5 4 + 1
16
ghci> (succ 9) + (max 5 4) + 1
16

また、次のように書いても 9 * 10の後者は得られません。

ghci> succ 9 * 10

演算の優先順位があるので、これは 9の後者（つまり 10）に 10を掛けたもの
として評価されます。すなわち 100 が得られます。望みの値を得るには、次の
ように入力する必要があります。

ghci> succ (9 * 10)

これは 91を返します。
関数が 2引数のときは、その関数をバッククオート（ `）で囲むことで中置関

数として呼び出せます†2。例えば、div関数は 2つの整数を引数に取り整数の除
算を行う関数です。

ghci> div 92 10
9

でもこのような呼び出し方では、どちらの数がどちらの数で割られるのか混乱
する場合があるかもしれません。バッククオートを使うと中置関数として呼び
出せるようになり、あっという間に分かりやすくなります。

†2 ［訳注］バッククオート（ `）はクオート（ '）とは違う文字ですよ！ 日本語キーボードなら「SHIFT-@」
で入力できるはずです。

oyaji (20170810-501DAE64)

1.2 赤ちゃんの最初の関数 5

ghci> 92 ‘div‘ 10
9

命令型言語に慣れているプログラマの中には、関数の適用を括弧で表すやり方
に固執してしまって Haskell 流のやり方に慣れるのに苦労している人も多くい
ます。 bar (bar 3)のようなものを見たら、これは最初に bar関数を 3を引数
として呼び出し、それからその結果を bar関数に再度渡している、と読めるよう
にしてください。これと等価な Cの式は bar(bar(3))です。

1.2 赤ちゃんの最初の関数
関数を定義する構文は、関数呼び出しに似ています。

すなわち、関数名の後ろにスペースで区切った引数が
続きます。ただし、引数の後ろには = 演算子が続き、
関数の本体を表すコードがそれに続きます。
例として、数を 1つ受け取り、それを 2倍する単純
な関数を書いてみましょう。お好みのエディタを開い
て、次のコードをタイプしてください。

doubleMe x = x + x

このファイルを baby.hsとして保存してください。それから baby.hsのある
ディレクトリで ghci を実行してください。GHCi が起動したら、 :l baby と
タイプしてファイルをロードします。これで新しい関数とたわむれることがで
きるようになります。

ghci> :l baby
[1 of 1] Compiling Main (baby.hs, interpreted)
Ok, modules loaded: Main.
ghci> doubleMe 9
18
ghci> doubleMe 8.3
16.6

+は整数だけじゃなく、浮動小数点数（実際には、数とみなせるものなら何で
も）に対しても動作するので、さっき定義した関数もそれらの型でも正しく動作
します。
今度は 2つの引数をそれぞれ 2倍してから足し合わせる関数を作ってみましょ
う。次のコードを baby.hsに追加してください。

doubleUs x y = x * 2 + y * 2

NOTE Haskellでは関数を決まった順番で定義する必要はありません。なので、コードの追
加は baby.hsファイルの先頭でもかまいません。

oyaji (20170810-501DAE64)

6 第 1章 はじめの第一歩

ではファイルを保存して、GHCiで :l babyとタイプして新しい関数をロー
ドしましょう。関数が期待した値を返すかテストします。

ghci> doubleUs 4 9
26
ghci> doubleUs 2.3 34.2
73.0
ghci> doubleUs 28 88 + doubleMe 123
478

関数の定義の中で自分で定義した関数を呼び出すこともできます。それを踏
まえて、 doubleUsを次のように定義することもできます。

doubleUs x y = doubleMe x + doubleMe y

これは Haskellを使っているときによく目にするパターン、「基本的で、明ら
かに正しい関数を組み合わせて、より大きな関数を組み立てる」のとてもシンプ
ルな一例です。このパターンは、コードの繰り返しを避ける素晴らしい方法で
す。例えば、ある日数学者たちが 2と 3が実は等しいと証明したせいでプログラ
ムを書き換える必要に迫られたら？ そんなときでも、ただ doubleMeの定義を
x + x + xに書き換えるだけです。 doubleMeを呼び出している doubleUsは 2
と 3が等しい、新しい奇妙な世界でも正しく動作するはずです。
次は、100以下のときだけ数を 2倍するような関数を書いてみましょう（100
より大きい数はもう十分に大きいので！）。

doubleSmallNumber x = if x > 100
then x
else x*2

この例には Haskell の if 式が出てきます。すでに他の言語で if 式にはお馴
染みかもしれませんが、Haskellのユニークなところは else節が必須なところ
です。
命令型言語のプログラムは本質的にはプログラム実行時にコンピュータが実
行するステップの列です。対応する else節のない if文があり、その場合条件
式が成立しなければ、if式の中は実行されずに下に抜けます。命令型言語では、
if文は何もしないということがあり得るのです。
一方で、Haskellプログラムは関数の集まりです。関数はデータ値を結果の値
に変換するのに使われ、すべての関数は何らかの値を返します。そしてその値は
また別の関数によって使われます。だから、すべての関数は何かを返さなければ
なりません。これは、すべての ifは対応する elseを持たなければならないこ
とを意味します。さもなければ、ある条件を満たすときは値を返し、満たさない
ときは返す値がないというような関数を定義できてしまいます！ 簡単に言うと、
Haskellの ifは必ず値を返す式であって、文ではないのです。

oyaji (20170810-501DAE64)

1.3 リスト入門 7

さっきの doubleSmallNumberの返す値に 1を加えたものを返す関数が欲しい
とします。その新しい関数は次のように書けます。

doubleSmallNumber' x = (if x > 100 then x else x*2) + 1

括弧があることに注意してください。括弧がないと、1 が足されるのは x が
100以下のときのみになってしまいます。関数名の最後に付いているアポストロ
フィ（ ' ）にも注目してください。アポストロフィは Haskell の構文では特別
な意味を持たない、関数名の一部として有効な文字です。慣習的に ' は、正格
（遅延じゃない）版の関数を表したり、少し変更したバージョンの関数に似た名
前をつけるために利用されます。

'は関数名として有効な文字なので、次のような関数を書くこともできます。

conanO'Brien = "It's a-me, Conan O'Brien!"

この関数には、注意すべきところが 2 つあります。1 つは、関数名の先頭の
Conanを大文字で始めないこと。Haskellでは関数を大文字で始められないこと
になっています（理由は後で見ていきましょう）。もう 1つは、この関数は引数
を何も受け取らないこと。関数が 1つも値を取らないとき、これを定義とか名前
とか呼びます。名前（もしくは関数）が何を表すかは、一度定義したら変更でき
ないので、関数 conanO'Brien と文字列 "It's a-me, Conan O'Brien!" は互
いに交換できます。

1.3 リスト入門
Haskell のリストは一様なデータ構造です。つま

り、同じ型の要素を複数個格納できます。整数のリ
スト、あるいは文字のリスト、といったものを作るこ
とはできますが、整数と文字の両方からなるリスト
を作ることはできません。
リストは要素をカンマ区切りで並べて、角括弧で

括ったものです。

ghci> let lostNumbers = [4,8,15,16,23,42]
ghci> lostNumbers
[4,8,15,16,23,42]

NOTE GHCi の中で名前を定義するときは let キーワードを使ってください。GHCi で
let a = 1と入力するのは、スクリプトに a = 1と書いて :lでロードするのと等価
です。

oyaji (20170810-501DAE64)

8 第 1章 はじめの第一歩

連結
リストの操作の中でも最も一般的なのは、連結操作です。Haskellでは ++演

算子を用いて行います。

ghci> [1,2,3,4] ++ [9,10,11,12]
[1,2,3,4,9,10,11,12]
ghci> "hello" ++ " " ++ "world"
"hello world"
ghci> ['w','o'] ++ ['o','t']
"woot"

NOTE Haskellでは、文字列は文字のリストとして表されています。例えば、文字列 "hello"

は実際にはリスト ['h','e','l','l','o']と同じです。このためリスト関数を文字
列に用いることができ、とても便利です。

長い文字列に対して繰り返し ++を使うときには注意が必要です。2つのリス
トを連結するとき、Haskellは 1つ目のリスト（ ++の左側）を最後まで走査し
ます。小さいリストを扱うときは問題になりませんが、例えば 5000万要素のリ
ストの最後に何かを追加するという操作には少々時間がかかるでしょう。
しかし、リストの先頭に何かを追加するのは、ほとんど一瞬で終わる軽い操作

です。これには :演算子（cons演算子とも呼ばれます）を使います。

ghci> 'A':" SMALL CAT"
"A SMALL CAT"
ghci> 5:[1,2,3,4,5]
[5,1,2,3,4,5]

最初の例で、 :が文字と文字のリスト（文字列）を引数に取っていることに注
目してください。2つ目の例では同様に、 :は数と数のリストを取っています。
:演算子の第一引数は、常に追加しようとしているリストの要素の型と同じ型の
単一の要素です。
これに対し、 ++ 演算子は必ず 2 つのリストを引数として受け取ります。 ++

を使ってリストの最後に 1つだけ要素を追加したい場合にも、Haskellが値をリ
ストとして扱うように角括弧で囲む必要があります。

ghci> [1,2,3,4] ++ [5]
[1,2,3,4,5]

[1,2,3,4] ++ 5と書くのは間違いです。なぜなら、 ++の引数は 2つともリ
ストでなければならなくて、 5はリストではなく数だからです。
面白いことに、Haskell では [1,2,3] は 1:2:3:[] の単なる構文糖衣です。

[]は空のリストです。その先頭に 3を追加すると [3]になります。そこにさら
に 2を先頭に追加すると、 [2,3]になります。

oyaji (20170810-501DAE64)

1.3 リスト入門 9

NOTE []、 [[]]、 [[],[],[]]はそれぞれ違うものです。1つ目は空リストで、2つ目は
1つの空リストを含むリストで、3つ目は 3つの空リストを含むリストです。

リストの要素へのアクセス
リストの要素を先頭からの位置で取得したいときには !! 演算子を用います。

多くのプログラミング言語と同じく添字は 0から数えます。

ghci> "Steve Buscemi" !! 6
'B'
ghci> [9.4,33.2,96.2,11.2,23.25] !! 1
33.2

5個しか要素のないリストの 6番目の要素を取り出そうとするとエラーになる
ので注意してください！

リスト中のリスト
リストはリストを要素として含むことができて、リストはリストを含むリスト

を含むことができて、……

ghci> let b = [[1,2,3,4],[5,3,3,3],[1,2,2,3,4],[1,2,3]]
ghci> b
[[1,2,3,4],[5,3,3,3],[1,2,2,3,4],[1,2,3]]
ghci> b ++ [[1,1,1,1]]
[[1,2,3,4],[5,3,3,3],[1,2,2,3,4],[1,2,3],[1,1,1,1]]
ghci> [6,6,6]:b
[[6,6,6],[1,2,3,4],[5,3,3,3],[1,2,2,3,4],[1,2,3]]
ghci> b !! 2
[1,2,2,3,4]

リスト中のリストは、それぞれ違う長さでもかまいませんが、違う型は許され
ません。文字と数を要素として持つリストを作れないのと同じように、文字のリ
ストと数のリストを要素として持つリストは作れません。

リストの比較
中の要素が比較可能であればリストも比較可能です。 <、<=、>=、>を使っ
て 2 つのリストを比較すると、辞書順で比較されます。まず 2 つのリストの先
頭の要素が比較され、それらが等しければ 2番目の要素どうしが比較されます。
2番目の要素も等しければ 3番目の要素が比較され、違う要素が見つかるまでこ
れが繰り返されます。2つのリストの順序は、最初に見つかった異なる要素の順
序で決まります。

oyaji (20170810-501DAE64)

10 第 1章 はじめの第一歩

例えば [3,4,2] < [3,4,3]を評価すると、Haskellはまず 3と 3が同じであ
ることを見て、 4と 4を比較します。これら 2つも同じなので、 2と 3を比較
します。 2は 3より小さいので、1つ目のリストは 2つ目のリストより小さいと
いう結論になります。 <=、 >=、 >の場合も同様です。

ghci> [3,2,1] > [2,1,0]
True
ghci> [3,2,1] > [2,10,100]
True
ghci> [3,4,2] < [3,4,3]
True
ghci> [3,4,2] > [2,4]
True
ghci> [3,4,2] == [3,4,2]
True

また、空でないリストは常に空リストよりも大きいとみなされます。これによ
り、一方のリストが他方の先頭部分に一致するようなケースを含めて、2つのリ
ストの順序がすべてについて明確に定義されます。

さらなるリスト操作
いくつかの基本的なリスト関数とその使い方を紹介します。
head関数はリストを受け取り、その head（先頭の要素）を返します。

ghci> head [5,4,3,2,1]
5

tail 関数はリストを受け取り、その tail（先頭を取り除いた残りのリスト）
を返します。

ghci> tail [5,4,3,2,1]
[4,3,2,1]

last関数はリストの最後の要素を返します。

ghci> last [5,4,3,2,1]
1

init関数はリストを受け取り、最後の要素を除いた残りのリストを返します。

ghci> init [5,4,3,2,1]
[5,4,3,2]

これらの関数を分かりやすく可視化するために、リストをこんな感じのモンス
ターと考えてみましょう。
空のリストの headを取ろうとすると何が起こるでしょう？

oyaji (20170810-501DAE64)

1.3 リスト入門 11

ghci> head []
*** Exception: Prelude.head: empty list

おっと、出鼻をくじかれました！ モンスターがいなければ頭（head）もない
のです。 head、 tail、 last、 initを使うときには空リストを渡さないよう
に注意してください。このエラーはコンパイル時には捕らえられないので、空
リストから何か取ってこいと Haskell にうっかり指示しないように気をつけま
しょう。

length関数はリストを受け取り、その長さを返します。

ghci> length [5,4,3,2,1]
5

null関数はリストが空かどうかを調べます。空なら Trueを、そうでなけれ
ば Falseを返します。

ghci> null [1,2,3]
False
ghci> null []
True

reverse関数はリストを逆順にします。

ghci> reverse [5,4,3,2,1]
[1,2,3,4,5]

take関数は数とリストを取り、先頭から指定された数の要素を取り出したリ
ストを返します。

ghci> take 3 [5,4,3,2,1]
[5,4,3]
ghci> take 1 [3,9,3]
[3]

oyaji (20170810-501DAE64)

12 第 1章 はじめの第一歩

ghci> take 5 [1,2]
[1,2]
ghci> take 0 [6,6,6]
[]

takeでリストの要素数より多い要素を取ろうとすると、Haskellはリスト全
体を返します。 takeで 0個の要素を取ると、空リストが返ります。
同様に drop 関数は、指定された数の要素を先頭から削除したリストを返し
ます。

ghci> drop 3 [8,4,2,1,5,6]
[1,5,6]
ghci> drop 0 [1,2,3,4]
[1,2,3,4]
ghci> drop 100 [1,2,3,4]
[]

maximum関数は、何らかの順序が定義された要素からなるリストを受け取り、
その中で最大の要素を返します。同様に minimum関数は最小の要素を返します。

ghci> maximum [1,9,2,3,4]
9
ghci> minimum [8,4,2,1,5,6]
1

sum関数は数のリストを受け取り、それらの和を返します。 product関数は
数のリストを受け取り、それらの積を返します。

ghci> sum [5,2,1,6,3,2,5,7]
31
ghci> product [6,2,1,2]
24
ghci> product [1,2,5,6,7,9,2,0]
0

elem関数は要素とリストを受け取り、それがリストの要素に含まれているか
どうかを返します。この関数は中置関数として使うと読みやすいので、中置関数
として用いられることが多いです。

ghci> 4 ‘elem‘ [3,4,5,6]
True
ghci> 10 ‘elem‘ [3,4,5,6]
False

oyaji (20170810-501DAE64)

1.4 レンジでチン！ 13

1.4 レンジでチン！
1 から 20 までの数からなるリストを作る

には、どうすればいいでしょうか？ もちろ
ん、手で打ち込んでもかまいませんが、それ
はプログラミング言語に優美さを求める紳
士の調理方法ではありません。代わりにレ
ンジ（range）を使いましょう。レンジは列
挙できる要素の組み合わせでリストを作る
のに使われます。
例えば、整数は 1, 2, 3, 4, ... といったふう

に列挙できます。文字もアルファベットの
A から Z のように列挙できます。でも例え
ば、名前は列挙できません（「ジョン」の次
の名前は何ですか？ 知らんわ！）。

1から 20のすべての自然数を含むリストを作るには、 [1..20]とタイプする
だけです。Haskellではこれは

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

とタイプするのとまったく同じことです。これら 2つの書き方の唯一の違いは、
長い列挙列を手で入力するのはバカげてる、ってことです。
いくつか例を挙げておきます。

ghci> [1..20]
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
ghci> ['a'..'z']
"abcdefghijklmnopqrstuvwxyz"
ghci> ['K'..'Z']
"KLMNOPQRSTUVWXYZ"

レンジにはステップを指定することもできます。1から 20までのすべての偶
数のリストが欲しいときはどうすればいいでしょうか？ あるいは、1から 20ま
でのすべての 3の倍数は？ 最初の要素と 2つ目の要素をカンマで区切って、上
限を指定するだけです。

ghci> [2,4..20]
[2,4,6,8,10,12,14,16,18,20]
ghci> [3,6..20]
[3,6,9,12,15,18]

これらはとても便利ですが、ステップ付きレンジは期待するほど賢くはありま
せん。例えば、 [1,2,4,8,16..100]と入力して、100までのすべての 2の累乗

oyaji (20170810-501DAE64)

14 第 1章 はじめの第一歩

を得ることはできません。この構文ではステップサイズを 1 つしか指定できま
せん。それと、等差数列ではない任意の数列を、最初のいくつかの項を与えるだ
けで曖昧性なく特定することもできません。

NOTE 20 から 1 までの減少列を作るためには、 [20..1] ではなくて、 [20,19..1] と書
かなければなりません。ステップなしで（ [20..1]のように）レンジを書いた場合、
Haskellは空リストから始めて、最初の要素が最後の要素より大きくなるまで要素を
列挙します。20はすでに 1より大きいので、結果はただの空リストになります。

上限を指定しないことで、レンジを使って無限リストを生成できます。例え
ば、13の倍数の最初の 24個からなるリストを作ってみましょう。1つのやり方
として、こんな方法があります。

ghci> [13,26..24*13]
[13,26,39,52,65,78,91,104,117,130,143,156,169,182,195,208,221,234,
247,260,273,286,299,312]

しかし、次のように無限リストを使うほうが良い方法です。

ghci> take 24 [13,26..]
[13,26,39,52,65,78,91,104,117,130,143,156,169,182,195,208,221,234,
247,260,273,286,299,312]

Haskellは遅延評価なので、無限リスト全体をすぐには評価しません（無限リ
ストの評価は終了しないので、これは望ましい動作です）。その代わりに、無限
リストの中の要素が必要とされるまで待ちます。上の例では、最初の 24個の要
素しか要求しないので、Haskellは喜んでそれを返します。
すごく長い、もしくは無限の長さのリストを生成するために使える関数がいく
つかあります。s cycle はリストを受け取り、その要素を無限に繰り返し、無限リストを

生成します。結果を表示しようとすると永遠に終わらないので、途中で切
るのを忘れずに。

ghci> take 10 (cycle [1,2,3])
[1,2,3,1,2,3,1,2,3,1]
ghci> take 12 (cycle "LOL ")
"LOL LOL LOL "s repeatは 1つの要素を受け取り、その要素のみが無限に繰り返される無

限リストを作ります。長さ 1のリストを cycleにかけるのと同じです。

ghci> take 10 (repeat 5)
[5,5,5,5,5,5,5,5,5,5]s replicateは単一の値からなるリストを作る簡単な方法です。リストの

長さと、複製する要素を与えます。

oyaji (20170810-501DAE64)

1.5 リスト内包表記 15

ghci> replicate 3 10
[10,10,10]

レンジに関する最後の注意。浮動小数点数に使うときは気をつけて！ 浮動小
数点数は精度に限りがあるので、レンジで使うと次のようなおかしな振る舞いを
することがあります。

ghci> [0.1, 0.3 .. 1]
[0.1,0.3,0.5,0.7,0.8999999999999999,1.0999999999999999]

1.5 リスト内包表記
リスト内包表記はリストのフィルタリング、変換、組み合わせを行う方法です。
これは数学における集合の内包的記法の概念に近いものです。集合の内包的

記法は、他の集合から別の集合を作るときによく用いられます。単純な例とし
て、{2 · x |x ∈ N, x ≤ 10} のようなものがあります。この例で重要なのは、そ
の厳密な構文ではなくて、「10以下のすべての自然数を取ってきて、それぞれ 2
倍して、その結果を新しい集合としなさい」と言ってることです。
同じことをHaskellでやりたい場合、 take 10 [2,4..]のようにリスト操作
で書けるでしょう。でもリスト内包表記を使ってこんなふうに書くこともでき
ます。

ghci> [x*2 | x <- [1..10]]
[2,4,6,8,10,12,14,16,18,20]

この例を詳しく見てリスト内包表記の理
解を深めましょう。

[x*2 | x <- [1..10]] では、リスト
[1..10] から要素を取り出すと言っていま
す。 [x <- [1..10]]は、 [1..10]から取
り出した各要素の値を x が受け取るという
意味です。これは別の表現では、 [1..10]

の各要素を x に束縛していると言えます。
縦棒（ |）より前の部分は、リスト内包表記
の出力を表します。この出力パートでは、取り出した値を使ってどんなリストを
作りたいかを指定します。この例だと、 [1..10]から取り出した各要素を 2倍
したい、と言っています。
この例だと take 10 [2,4..] よりも複雑で長くなっているように見えます
が、数の 2倍なんかよりもっと複雑なことがやりたくなったらどうでしょうか？
ここからがリスト内包表記の本領発揮です。

oyaji (20170810-501DAE64)

16 第 1章 はじめの第一歩

例えば、さっきの内包表記に条件（述語とも呼びます）を追加してみましょ
う。述語はリスト内包表記の最後に置き、他のパートとはカンマで区切ります。
2倍した値が 12以上のものからなるリストが欲しいとしましょう。

ghci> [x*2 | x <- [1..10], x*2 >= 12]
[12,14,16,18,20]

50から 100の数のうち、7で割った余りが 3であるすべての数が欲しかった
ら？ これも簡単。

ghci> [x | x <- [50..100], x ‘mod‘ 7 == 3]
[52,59,66,73,80,87,94]

NOTE 述語を使ってリストを間引くことをフィルタするといいます。

もっと別の例を考えましょう。10 以上のすべての奇数を "BANG!" に置き換
え、10 より小さいすべての奇数を "BOOM!" に置き換える内包表記を考えます。
数が奇数でなければリストから削除します。再利用のことを考えて、内包表記を
関数の中に記述することにします。

boomBangs xs = [if x < 10 then "BOOM!" else "BANG!" | x <- xs, odd x]

NOTE GHCiの中で関数を定義しようとする場合は、関数名の前に letを付けるのを忘れず
に。でも、この関数をスクリプトに書いてそこから GHCiにロードするなら、面倒く
さい letと付き合う必要はありません。

odd 関数は、奇数が与えられたら True を、そうでなければ False を返しま
す。すべての述語が Trueに評価された要素だけがリストに含まれます。

ghci> boomBangs [7..13]
["BOOM!","BOOM!","BANG!","BANG!"]

カンマで区切ることによって、たくさんの述語を含めることができます。例え
ば、10から 20の中で、13、15、19でないすべての数が欲しいなら、次のよう
になります。

ghci> [x | x <- [10..20], x /= 13, x /= 15, x /= 19]
[10,11,12,14,16,17,18,20]

述語を複数書くだけでなく、複数のリストから値を取り出すこともできます。
複数のリストから値を取り出すと、それらのリストの要素のすべての組み合わ
せが結果のリストに反映されます。

ghci> [x+y | x <- [1,2,3], y <- [10,100,1000]]
[11,101,1001,12,102,1002,13,103,1003]

oyaji (20170810-501DAE64)

1.5 リスト内包表記 17

x はリスト [1,2,3] から取り出された値、 y はリスト [10,100,1000] から
取り出された値です。これら 2 つのリストが次のように組み合わされます。最
初に xが 1になり、 xが 1の間に、 yが [10,100,1000]からすべての値を取り
ます。リスト内包表記の出力パートが x+yなので、結果のリストの先頭が 11、
101、1001の各値になります（ 10、100、1000に 1が足される）。その後、x

が 2になり、さっきと同じことが繰り返され、結果のリストに 12、102、1002

が追加されます。最後、 xが 3のときも同様です。
このように、リスト [1,2,3] の各要素から x とリスト [10,100,1000] の各

要素から y とがすべてのあり得る組み合わせを取り、その組み合わせから x+y

を使って結果のリストが作られます。
別の例を考えましょう。2 つのリスト [2,5,10] と [8,10,11] に対して、こ
れらのリストの要素のすべての組み合わせの積を求めたいときは、次のような内
包表記になります。

ghci> [x*y | x <- [2,5,10], y <- [8,10,11]]
[16,20,22,40,50,55,80,100,110]

期待したとおり、新しいリストの長さは 9です。では、すべての組み合わせの
積のうちで 50より大きいものだけ欲しいなら？ 述語を追加するだけです。

ghci> [x*y | x <- [2,5,10], y <- [8,10,11], x*y > 50]
[55,80,100,110]

今度は、形容詞と名詞のリストを組み合わせて変な言葉を作っちゃいましょ
う†3。

ghci> let nouns = ["hobo","frog","pope"]
ghci> let adjectives = ["lazy","grouchy","scheming"]
ghci> [adjective ++ " " ++ noun ⇨

| adjective <- adjectives, noun <- nouns]
["lazy hobo","lazy frog","lazy pope","grouchy hobo","grouchy frog",
"grouchy pope","scheming hobo","scheming frog","scheming pope"]

リスト内包表記を使って length関数を独自に定義することだってできます！
これを length'と名づけましょう。この関数は、リストのすべての要素を 1に
置換してから sumで足し合わせてリストの長さを得ます。

length' xs = sum [1 | _ <- xs]

この例ではリストから取り出した値を利用しないので、それを使い捨てるため
に変数名アンダースコア（ _）を使っています。

†3 ［訳注］本書では ghci>プロンプトに続けて入力する式がページ幅に収まらない場合、この例のように⇨
マークで折り返し表示しています。実際には途中で改行せず 1行で入力してくださいね。（22ページの脚注
も参照。）

oyaji (20170810-501DAE64)

18 第 1章 はじめの第一歩

文字列もリストなので、文字列を処理して生成するのにもリスト内包表記が使
えます。次の例は文字列を受け取り、すべての小文字を取り除く（大文字だけを
残す）関数です。

removeNonUppercase st = [c | c <- st, c ‘elem‘ ['A'..'Z']]

すべての仕事をこなしているのは、新しいリストに含まれるものはリスト
['A'..'Z']に含まれるものだけだ、という述語です。GHCiにロードして試し
てみましょう。

ghci> removeNonUppercase "Hahaha! Ahahaha!"
"HA"
ghci> removeNonUppercase "IdontLIKEFROGS"
"ILIKEFROGS"

リストを含むリストを操作する場合には、入れ子になったリスト内包表記が作
れます。数のリストからなるリストを受け取り、各要素はリストのままに、そこ
から奇数だけを取り除くという操作を考えましょう。

ghci> let xxs = [[1,3,5,2,3,1,2,4,5], ⇨
[1,2,3,4,5,6,7,8,9], ⇨
[1,2,4,2,1,6,3,1,3,2,3,6]]

ghci> [[x | x <- xs, even x] | xs <- xxs]
[[2,2,4],[2,4,6,8],[2,4,2,6,2,6]]

外側のリスト内包表記の出力パートが、別のリスト内包表記になっています。
リスト内包表記は必ず何らかのリストを返すので、全体の結果は数のリストのリ
ストになることが分かります。

NOTE 可読性のためにリスト内包表記を複数行に分けることもできます。GHCiの中でコー
ドを書くのでなければ、入れ子になった内包表記は複数行にしたほうが扱いやすいで
しょう。

1.6 タプル
タプルは、複数の違う型の要素を格納して、1つの

値にするために使います。
タプルにはリストと似ている点がいくつかあります

が、リストとタプルには根本的な違いがあります。1
つ目の違いはヘテロであること、つまり複数の違う型
の要素が格納できるということです。2 つ目の違いは、タプルはサイズが固定
だということです。格納する要素がいくつなのか事前に知っている必要があり
ます。

oyaji (20170810-501DAE64)

1.6 タプル 19

タプルは括弧で囲み、要素をカンマで区切ります。

ghci> (1, 3)
(1,3)
ghci> (3, 'a', "hello")
(3,'a',"hello")
ghci> (50, 50.4, "hello", 'b')
(50,50.4,"hello",'b')

タプルを使う
どんなときにタプルが便利なのかを示す例として、Haskell で 2 次元ベクト

ルを表す方法を考えてみましょう。考えられる方法の 1つは、2要素からなるリ
スト [x,y]を用いるものです。その場合、2次元座標上での図形の頂点を表現す
るベクトルのリストを作りたいとしたら、 [[1,2],[8,11],[4,5]]のようなリ
ストのリストになるでしょう。
この方法の問題点は、 [[1,2],[8,11,5],[4,5]] のようなリストが作れて、
これを 2 次元ベクトルのリストが期待される箇所で使えてしまうことです。こ
のリストはベクトルのリストとしては意味を成さないにもかかわらず、型（ここ
では数のリストのリスト）が同じであるという理由で、Haskellはベクトルのリ
ストがくるべき箇所でこのリストを何の問題もなく受け入れてしまいます。こ
れではベクトルや図形を操作する関数を書くときに厄介です。
これに対し、サイズ 2のタプル（ペアとも呼ばれる）とサイズ 3のタプル（ト

リプルとも呼ばれる）は、それぞれ違う型として扱われるので、ペアとトリプル
両方を含むリストは作れません。このため、ベクトルを表すにはタプルを使った
ほうがはるかに有利です。
先ほどのベクトルの角括弧を丸括弧に変えて、 [(1,2),(8,11),(4,5)]のよ
うにすれば、タプルになります。今度はペアとトリプルを混在させるとエラーに
なります。

ghci> [(1,2),(8,11,5),(4,5)]
Couldn't match expected type ‘(t, t1)'
against inferred type ‘(t2, t3, t4)'
In the expression: (8, 11, 5)
In the expression: [(1, 2), (8, 11, 5), (4, 5)]
In the definition of ‘it': it = [(1, 2), (8, 11, 5), (4, 5)]

Haskell は、長さが同じで違う型を含むタプルを区別できます。例えば、
[(1,2),("One",2)]のようなタプルのリストは作れません。1つ目のタプルは
2つの数からなるペアですが、2つ目のタプルは文字列と数からなるペアだから
です。

oyaji (20170810-501DAE64)

20 第 1章 はじめの第一歩

タプルを使っていろいろなデータを簡単に表せます。例えば、人の名前と年齢
を Haskellで表現するなら、 ("Christopher", "Walken", 55)のようなトリ
プルが使えます。
タプルは固定長だということを忘れないでください。あらかじめ必要とする
要素の数が分かっている場合にだけ利用できます。タプルがこんなふうに融通
が利かないのは、さっき見てきたようにそのサイズも型の一部だからです。その
ため、残念ながらタプルに要素を追加する一般的な関数は書けません。ペアに要
素を追加してトリプルを生成する関数、トリプルに要素を追加する 4-タプルを
生成する関数、4-タプルに要素を追加する関数、さらに大きなタプルに要素を追
加する関数などは、それぞれ別個に書かなければなりません。
リストと同じく、構成要素が比較可能であればそれを含むタプルも互いに比
較できます。しかしリストとは違って、サイズの違うタプルを比較することはで
きません。
単一要素のリストは存在しますが、単一要素のタプルは存在しません。それが
どういうものを表すかを考えれば理由が分かるでしょう。単一要素のタプルの
性質は、それが保持している値と同じはずであり、それらを区別してもうれしい
ことは何もないからです。

ペアを使う
Haskellでは値を格納するためにペアがとてもよく用いられるので、ペアを操

作するための便利な関数がいくつか用意されています。s fstはペアを受け取り、1つ目の要素を返します。

ghci> fst (8, 11)
8
ghci> fst ("Wow", False)
"Wow"s sndはペアを受け取ると、あらびっくり！ 2つ目の構成要素を返します。

ghci> snd (8, 11)
11
ghci> snd ("Wow", False)
False

NOTE これらの関数はペアに対してだけ働きます。トリプルや 4-タプル、5-タプルなどには
使えません。トリプルから値を取り出す方法は少し後で出てきます。

zip関数はペアのリストを作るスマートな方法です。 zipは 2つのリストを
受け取り、ジッパーみたいに 1つのリストにします。とてもシンプルな関数です

oyaji (20170810-501DAE64)

1.6 タプル 21

が、2つのリストを同時に走査するときにとても便利な関数です。こんなふうに
使います。

ghci> zip [1,2,3,4,5] [5,5,5,5,5]
[(1,5),(2,5),(3,5),(4,5),(5,5)]
ghci> zip [1..5] ["one", "two", "three", "four", "five"]
[(1,"one"),(2,"two"),(3,"three"),(4,"four"),(5,"five")]

ペアは違う型を含むことができるので、 zip は違う型のリストを受け取れる
ことに注意してください。では、リストの長さが違う場合はどうなるでしょう？

ghci> zip [5,3,2,6,2,7,2,5,4,6,6] ["im","a","turtle"]
[(5,"im"),(3,"a"),(2,"turtle")]

この例で分かるように、長いほうのリストは必要な分だけが使われ、余りは無
視されます。Haskellは遅延評価なので、有限リストと無限リストを zipするこ
ともできます。

ghci> zip [1..] ["apple", "orange", "cherry", "mango"]
[(1,"apple"),(2,"orange"),(3,"cherry"),(4,"mango")]

直角三角形を見つける
タプルとリスト内包表記を組み合わせて 1 つ問題を解いてみましょう。

Haskell を用いて次のすべての条件を満たす直角三角形を見つけるプログラ
ムを書きます。s 3辺の長さはすべて整数である。s 各辺の長さは 10以下である。s 周囲の長さは 24に等しい。

1つの角が直角（90度）であるような三角
形のことを直角三角形と呼びます。直角三角
形には、直角を挟む 2辺の長さを 2乗して足
し合わせると、その対辺を 2乗したものに等
しくなるという便利な性質があります。図で
は、直角の両脇の直線にラベル aと bが付け
られていて、直角の対辺にラベル cが付けら
れています。この辺を斜辺と呼びます。
最初のステップとして、各要素が 10以下であるようなトリプルをすべて生成

してみましょう。

ghci> let triples = ⇨
[(a,b,c) | c <- [1..10], a <- [1..10], b <- [1..10]]

oyaji (20170810-501DAE64)

22 第 1章 はじめの第一歩

内包表記の右側の部分で 3 つのリストから値を取り出し、出力の式で 3 つの
値を組み合わせてトリプルのリストを作っています。 triples を評価すると、
1000要素のリストが表示されるはずなので、ここには示しません。
次に、ピタゴラスの定理（ a^2 + b^2 == c^2 ）が成り立つかを調べる述語
を追加して、直角三角形でないものをフィルタしましょう。また、aが斜辺 cを
超えないように、 bが aを超えないように、それぞれ変更を加えます。

ghci> let rightTriangles = ⇨
[(a,b,c) | c <- [1..10], a <- [1..c], b <- [1..a], ⇨

a^2 + b^2 == c^2]

リストのレンジをどんなふうに変更したかに注目してください。 b が斜辺よ
り長いような不要なトリプルを調べないような変更をしています（正しい直角三
角形は必ず斜辺が一番長いのです）。
また、辺 b が辺 a を超えないようにしています。このように変更しても問題
ありません。なぜならば、 a^2 + b^2 == c^2および b > aを満たすトリプル
(a,b,c)は考えなくていいからです。トリプル (b,a,c)は検査対象に残ってい
て、これは同じ三角形の辺を入れ替えたものです（そうしないと、結果のリスト
に本質的には同じ三角形が含まれることになります）。

NOTE GHCiでは式の定義を複数行にわたって書くことができません†4。この本には、紙面
の幅に合わせるために 1行を複数行に分割している箇所がたまにあります（そうしな
いと、本の幅がとんでもないことになって、普通の本棚に入らなくなって、読者の皆
様はでっかい本棚を買わなければならなくなります）。

もうほとんど終わりです。関数を修正して、周囲の長さが 24のものだけ出力
しましょう。

ghci> let rightTriangles' = ⇨
[(a,b,c) | c <- [1..10], a <- [1..c], b <- [1..a], ⇨

a^2 + b^2 == c^2, a+b+c == 24]
ghci> rightTriangles'
[(8,6,10)]

答が出ました！ このように、最初に解の候補となる集合を生成し、それから
1つ（もしくは複数）の解に辿り着くまで変換とフィルタリングを行うという手
法は、関数プログラミングでよく用いられるパターンです。

†4 ［訳注］翻訳時点の Haskell Platformに同梱されている GHCiでは、 :{と :}で挟むことにより複数行
にわたって式を書けます。また GHCi 7.2.1以降では、 :set +mとすることで複数行にわたって式を書け
るようになりました。

oyaji (20170810-501DAE64)

第2章
型を信じろ！

Haskellの強みの 1つは、その強力な
型システムです。

Haskellでは、すべての式の型がコン
パイル時に分かっていて、そのことが
コードを安全にしています。例えば、真
理値型を数値で割ろうとすると、コンパ
イル時にエラーになります。こういっ
た類のエラーをコンパイル時に捕まえ
ることができるのは、実行時にプログラ

ムがクラッシュするよりも好ましいことです。Haskell ではすべてのものが型
を持つので、コンパイラはプログラムを見るだけで実に多くのことを推論でき
ます。

Javaや Pascalとは違って、Haskellには型推論があります。例えば、数を書
いたなら、「これは数の型だよ」と教えてあげなくても、Haskellはそれを自力
で推論することができます。
型については、Haskell の基礎とあわせてまだほんの上っ面しか眺めていま

せんが、型システムをしっかり理解することは Haskell を学ぶ上でとても重要
です。

2.1 明示的な型宣言
式の型は GHCiを使って調べることができます。 :tコマンドに続けて正しい

式を入力すればその式の型を教えてくれます。試しにやってみましょう。

ghci> :t 'a'
'a' :: Char

23

oyaji (20170810-501DAE64)

24 第 2章 型を信じろ！

ghci> :t True
True :: Bool
ghci> :t "HELLO!"
"HELLO!" :: [Char]
ghci> :t (True, 'a')
(True, 'a') :: (Bool, Char)
ghci> :t 4 == 5
4 == 5 :: Bool

::という記号は、「の型を持つ。」と
読みます。明示的な型の名前の先頭は
常に大文字です。 'a'は、文字を意味す
る型 Char を持ちます。 True はBool、
つまり真理値型です。 "HELLO!" は文
字列ですが、型 [Char] を持つと表示
されています。角括弧はリストのこと
なので、これは文字のリストと読むこ
とができます。タプルはリストとは違
い、個々の要素が型を持ちます。タプル
(True, 'a') は型 (Bool, Char) を持
ち、 ('a','b','c')は型 (Char, Char, Char)を持ちます。 4 == 5は、常に
Falseを返すので、その型は Boolです。
関数も型を持ちます。自分で関数を書くとき、その関数に明示的な型宣言を与
えることができます。これは Haskellのプログラムを書く上で、（とても短い関
数を書く場合は除いて）一般的に良い習慣だと考えられています。なので、これ
からはすべての関数に明示的な型宣言を与えることにします。
第 1章で作った、文字列中の小文字をフィルタするリスト内包表記を思い出し
ましょう。これに型宣言を与えると、次のようになります†1。

removeNonUppercase :: [Char] -> [Char]
removeNonUppercase st = [c | c <- st, c ‘elem‘ ['A'..'Z']]

removeNonUppercase 関数は型 [Char] -> [Char] を持ちます。これは、1
つの文字列を引数として取り、別の文字列を結果として返すという意味です。
では、関数が複数の引数を持つ場合はどうでしょうか？ 3つの整数を受け取っ

てそれらを足し合わせる単純な関数はこうなります。

addThree :: Int -> Int -> Int -> Int
addThree x y z = x + y + z

†1 ［訳注］この例は、まず.hsファイルを作って試してください。GHCiの中で、型宣言付きの関数を定義
するにはちょっとした工夫が必要です。具体的な方法はいくつかありますので、探してみてください！

oyaji (20170810-501DAE64)

2.2 一般的な Haskellの型 25

引数と返り値の型は -> で区切り、返り値の型は常に宣言の最後に置きます
（引数と返り値を区別せず、どれも ->で区切っている理由は、第 5章で明らかに
なります）。
関数に型宣言を与えたいけど、その型が何になるのか書いてみないとよく分か

らない場合は、はじめに型宣言なしで関数を書き、それから :tを使ってその型
を調べればよいでしょう。関数は式なので、この章の冒頭で見たように :tが使
えます。

2.2 一般的なHaskellの型
数や文字や真理値といった、よく使うHaskellの型をいくつか見てみましょう。s Intは整数です。数全般に使います。 7は Intになれますが、 7.2はな
れません。 Intは有界、つまり最小値と最大値があります。

NOTE GHC コンパイラでは Int の範囲がマシンのワードサイズによって変わりま
す。64ビット CPUでは Intの最小値は−263 で、最大値は 263 − 1になる
でしょう。

s Integerも整数に使いますが、こちらは有界ではないので、とても大きい
数（それもはんぱなく大きい数！）を表すのに使えます。とはいえ、 Int

のほうが効率的です。 Integerの例として、次の関数をファイルに保存
してみてください。

factorial :: Integer -> Integer
factorial n = product [1..n]

それから :lで GHCiにロードして試してみましょう。

ghci> factorial 50
30414093201713378043612608166064768844377641568960512000000000000s Float は単精度浮動小数点数です。ファイルに次の関数を追加してくだ

さい。

circumference :: Float -> Float
circumference r = 2 * pi * r

ロードして試してみましょう。

ghci> circumference 4.0
25.132742s Doubleは倍精度浮動小数点数です。倍精度型が数を表すのに使うビット

数は Floatの 2倍です。より多くのリソースを必要とする分、精度が高

oyaji (20170810-501DAE64)

26 第 2章 型を信じろ！

くなります。次の関数をファイルに追加しましょう。

circumference' :: Double -> Double
circumference' r = 2 * pi * r

ロードして試してみましょう。 circumferenceと circumference'の精
度の違いに特に注目してください。

ghci> circumference' 4.0
25.132741228718345s Boolは真理値型です。真理値型が持てる値は Trueと Falseの 2つのみ

です。s Charは Unicode文字を表します。シングルクオート（ '）で括って表
記します。文字のリストは文字列です。s タプルも型ですが、その定義は要素の数とそれぞれの型によって決まりま
す。そのため、理論的には無限の種類のタプル型が存在します（実際の処
理系ではタプルの要素の最大数は 62です。でも、そんなに必要になるこ
とはまずないでしょう）。空のタプル () も型だということに注意してく
ださい。この型はただ 1つの値 ()のみを持ちます†2。

2.3 型変数
いろいろな型に対して動作する関数があります。例えば head関数は、リスト

を取りその先頭の要素を返します。この関数は、リストの要素が数だろうと文字
だろうと、はたまたさらにネストしたリストだろうと、何も問題ないはずです！
なのでこの関数はあらゆる型のリストに対して動作するべきです。

head関数の型は何だと思いますか？ :tで調べてみましょう。

ghci> :t head
head :: [a] -> a

aとは何でしょうか？ 型の名前だとした
ら大文字から始まるはずでしたね。なので、
これは型ではありません。この a は型変数
と呼ばれるもので、どんな型も取り得るとい
うことを意味します。
型変数は、型安全を保ったまま、関数を複
数の型に対して動作できるようにしてくれ

†2 ［訳注］「 ()」は「ユニット」と呼ばれます。

oyaji (20170810-501DAE64)

2.4 型クラス初級講座 27

ます。他のプログラミング言語にあるジェネリクスにちょっとだけ似ています
が、Haskellの型変数はとても一般的な関数を簡単に書けるので、はるかにパワ
フルです。
型変数を用いた関数は多相的関数と呼ばれます。 headの型宣言は「任意の型

のリストを引数に取り、その型の要素を 1つ返す」と読むことができます。

NOTE 型変数には 1 文字より長い名前をつけてもかまいませんが、 a とか b とか c とか d

のような名前をつけることが多いです。

ペアの 1つ目の要素を返す関数 fstを覚えていますか？ この関数の型を調べ
てみましょう。

ghci> :t fst
fst :: (a, b) -> a

fstはタプルを引数に取り、その 1つ目と同じ型の値を返すことが見て取れ
るでしょう。これがどんな型のペアに対しても fst が使える理由です。 a と b

は違う型変数ですが、必ずしも違う型である必要はありません。ペアの 1つ目の
要素の型と返り値の型が同じであると言っているだけです。

2.4 型クラス 初級講座
型クラスは、何らかの振る舞いを
定義するインターフェイスです。あ
る型クラスのインスタンスである型
は、その型クラスが記述する振る舞
いを実装します。
もっと具体的に言うと、型クラス

というのは関数の集まりを定めま
す。ある型クラスに属する関数の
ことを、その型クラスのメソッドと
呼ぶこともあります。ある型を型ク
ラスのインスタンスにしようと考え
たときには、それらの関数がその型ではどういう意味を成すのかを定義します。
等値性を定義する型クラスが良い例です。多くの型について、その値の等値性

を ==演算子を使って比較できます。この演算子の型を調べてみましょう。

ghci> :t (==)
(==) :: (Eq a) => a -> a -> Bool

oyaji (20170810-501DAE64)

28 第 2章 型を信じろ！

等値性演算子（ ==）は実際には関数であることに注意してください。 +、*、
- 、 / など、ほかのほとんどすべての演算子も同様です。関数の名前が特殊文
字のみからなる場合、その関数はデフォルトで中置関数になります。その型を調
べたい場合や、他の関数に渡したい場合、あるいは前置関数として呼び出したい
場合には、上の例のように丸括弧で囲む必要があります。
この例には見慣れないものがありますね。 =>というシンボルです。このシン
ボルよりも前にあるものは型クラス制約と呼ばれます。この例の型宣言は、「等
値性関数は、同じ型の任意の 2つの引数を取り、 Boolを返す。引数の 2つの値
の型は Eqクラスのインスタンスでなければならない」と読めます。

Eq 型クラスは、等値性をテストするためのインターフェイスを提供します。
ある型の 2つの値の等値性を比較することに意味があるなら、その型は Eq型ク
ラスのインスタンスにできます。Haskellのすべての標準型（I/O型と関数を除
く）は Eqのインスタンスです。

NOTE 型クラスはオブジェクト指向のクラスとは同じではないということに注意してくださ
い。これは重要です。

よく使われる Haskell の型クラスをいくつか見ていきましょう。型の値の等
値性や順序を簡単に比較したり、手軽に文字列として表示したりできるのは、こ
れらの型クラスのおかげです。

Eq 型クラス
すでに見たように、 Eqは等値性をテストできる型に使われます。 Eqのイン

スタンスが実装すべき関数は ==と /=です。これは、関数の型変数に Eqクラス
の制約が付いていたら、その関数の定義のどこかで ==か /=が使われていると
いうことです。型が関数を実装しているとは、その関数がその特定の型に対して
使われたときに、どういう振る舞いをするか定義するということです。 Eqのさ
まざまなインスタンスに対する ==と /=の動作の例をいくつか挙げます。

ghci> 5 == 5
True
ghci> 5 /= 5
False
ghci> 'a' == 'a'
True
ghci> "Ho Ho" == "Ho Ho"
True
ghci> 3.432 == 3.432
True

oyaji (20170810-501DAE64)

2.4 型クラス初級講座 29

Ord 型クラス
Ordは、何らかの順序を付けられる型のための型クラスです。例えば、大なり

演算子（ >）の型を見てみましょう。

ghci> :t (>)
(>) :: (Ord a) => a -> a -> Bool

>の型は ==の型に似ています。引数を 2つ取り、それらが関係を満たすかど
うかを教えてくれる Boolを返します。
今まで見てきた型は、またもや関数は除いて、すべて Ord のインスタンスで

す。 Ord はすべての標準的な大小比較関数、 > 、 < 、 >= 、 <= をサポートし
ます。

compare関数は Ordのインスタンスの型の引数を 2つ取り、 Orderingを返
します。 Orderingは GT、 LTまたは EQのいずれかの値を取る型で、それぞれ
「より大きい」、「より小さい」、「等しい」を意味します。

ghci> "Abrakadabra" < "Zebra"
True
ghci> "Abrakadabra" ‘compare‘ "Zebra"
LT
ghci> 5 >= 2
True
ghci> 5 ‘compare‘ 3
GT
ghci> 'b' > 'a'
True

Show 型クラス
ある値は、その型が Show型クラスのインスタンスになっていれば、文字列と
して表現できます。今まで見てきた型は、関数を除けば、すべて Show のイン
スタンスです。この型クラスのインスタンスに対する操作で一番よく使うのは
showで、これは指定した値を文字列として表示する関数です。

ghci> show 3
"3"
ghci> show 5.334
"5.334"
ghci> show True
"True"

oyaji (20170810-501DAE64)

30 第 2章 型を信じろ！

Read 型クラス
Readは Showと対をなす型クラスです。またしても、今まで見てきたすべて

の型はこの型のインスタンスです。 read関数は文字列を受け取り、 Readのイ
ンスタンスの型の値を返します。

ghci> read "True" || False
True
ghci> read "8.2" + 3.8
12.0
ghci> read "5" - 2
3
ghci> read "[1,2,3,4]" ++ [3]
[1,2,3,4,3]

ここまでは順調です。しかし、 read "4"とタイプしてみるとどうなるでしょ
うか？

ghci> read "4"
<interactive>:1:0:

Ambiguous type variable 'a' in the constraint:
'Read a' arising from a use of 'read' at <interactive>:1:0-7

Probable fix: add a type signature that fixes these type variable(s)

GHCi は、何を返せばいいか分からないよ、と言ってます。 read を使った
直前の例で返すべき値の型を GHCiが推論できていたのは、結果の値に何かし
らの手が加えられていたからです。例えば真理値として使われている場合には、
Boolを返すべきだと GHCiは推論できます。しかし read "4"では、 Readク
ラスのどれかを返すことしか分からず、具体的に何を返せばいいのか GHCiに
は分かりません。 readの型シグネチャを見てみましょう。

ghci> :t read
read :: (Read a) => String -> a

NOTE Stringは、 [Char]の単なる別名です。 Stringと [Char]は、それぞれまったく同
じように使えますが、本書ではもっぱら Stringを使うことにします。 Stringのほ
うが簡単に書けるし、読みやすいですからね。

型シグネチャから、 read関数が返す値の型は、 Readのインスタンスである
ことは読み取れますが、返された値の使い方によっては、それが具体的にどの型
なのか判定できなくなってしまうことがあります。 この問題を解決するために、
型注釈というものを用います。
型注釈は、式が取るべき型を Haskell に明示的に教えてあげる手段です。式

の終わりに ::を追記し、それから型を指定します。

oyaji (20170810-501DAE64)

2.4 型クラス初級講座 31

ghci> read "5" :: Int
5
ghci> read "5" :: Float
5.0
ghci> (read "5" :: Float) * 4
20.0
ghci> read "[1,2,3,4]" :: [Int]
[1,2,3,4]
ghci> read "(3, 'a')" :: (Int, Char)
(3, 'a')

コンパイラはほとんどの式の型を自力で推論できます。しかし、 read "5"の
型が Intか Floatか分からないように、返り値の型をうまく推論できない場合
もあります。 read "5"を実際に評価することができれば、その型を知ることも
できるかもしれませんが、Haskellは静的型付け言語なので、コードをコンパイ
ルする（あるいは GHCiで評価される）前にすべての型が分かっている必要が
あります。そこで、
「ヘイ、分からないなら教えてあげるけど、この式はこの型なんだよ！」
と Haskellに伝えてあげるわけです。

Haskellに readが返すべき値の型が何なのかを教えるのは最小限でかまいま
せん。例えば readの結果をリストの中に詰め込めば、Haskellはそのリストを
通じて、「返り値の型はリストの他の要素の型である」と知ることができます。

ghci> [read "True", False, True, False]
[True, False, True, False]

read "True"は Bool値のリストの要素なので、 read "True"も Boolでな
ければならないと分かります。

Enum 型クラス
Enumのインスタンスは、順番に並んだ型、つまり要素の値を列挙できる型で

す。 Enum 型クラスの主な利点は、その値をレンジの中で使えることです。ま
た、 Enum のインスタンスの型には後者関数 succ と前者関数 pred も定義され
ます。 Enumクラスのインスタンスとしては、 ()、 Bool、 Char、 Ordering、
Int、Integer、Float、 Double などがあります。

ghci> ['a'..'e']
"abcde"
ghci> [LT .. GT]
[LT,EQ,GT]
ghci> [3 .. 5]
[3,4,5]
ghci> succ 'B'
'C'

oyaji (20170810-501DAE64)

32 第 2章 型を信じろ！

Bounded 型クラス
Bounded型クラスのインスタンスは上限と下限を持ち、 それぞれ minBound

と maxBound関数で調べることができます。

ghci> minBound :: Int
-2147483648
ghci> maxBound :: Char
'\1114111'
ghci> maxBound :: Bool
True
ghci> minBound :: Bool
False

minBound と maxBound 関数は、 (Bounded a) => a という面白い型を持っ
ています。これらは、いわば多相定数です。
タプルのすべての構成要素が Boundedのインスタンスなら、そのタプル自身
も Boundedになることに気をつけてください。

ghci> maxBound :: (Bool, Int, Char)
(True,2147483647,'\1114111')

Num 型クラス
Num は数の型クラスです。このインスタンスは数のように振る舞います。数

の型を調べてみましょう。

ghci> :t 20
20 :: (Num t) => t

あらゆる数もまた多相定数として表現されていて、 Num 型クラスの任意のイ
ンスタンス（ Int、 Integer、 Float、 Doubleなど）として振る舞うことが
できます。

ghci> 20 :: Int
20
ghci> 20 :: Integer
20
ghci> 20 :: Float
20.0
ghci> 20 :: Double
20.0

例えば、演算子 *の型を調べることができます。

ghci> :t (*)
(*) :: (Num a) => a -> a -> a

oyaji (20170810-501DAE64)

2.4 型クラス初級講座 33

これは、*が 2つの数を受け取って 1つの数を返すこと、これら 3つの数はす
べて同じ型であることを示しています。この型クラス制約により、 (5 :: Int)

 * (6 :: Integer)は型エラーになり、5 * (6 :: Integer)は正しく動きま
す。 5は Integerや Intとして振る舞うことができますが、同時に両方にはな
れません。
ある型を Numのインスタンスにするには、その型がすでに Showと Eqのイン
スタンスになっている必要があります†3。

Floating 型クラス
Floating 型クラスには Float と Double が含まれます。この型クラスは浮

動小数点数に使います。
引数と返り値が Floating型クラスのインスタンスであるような関数は、その
結果を浮動小数点数で表現できないと意味のある計算ができません。例として
は、 sin、 cos、 sqrtなどがあります。

Integral 型クラス
Integral もまた数の型クラスです。 Num が実数を含むすべての数を含む

一方、 Integral には整数（全体）のみが含まれます。この型クラスは Int と
Integerを含みます。
数を扱うとりわけ便利な関数として fromIntegral があります。この関数は

次のような型を持っています。

fromIntegral :: (Num b, Integral a) => a -> b

NOTE fromIntegral の型シグネチャに複数の型クラス制約があることに注目してくださ
い。複数の型クラス制約を書くときは、このようにカンマ（ ,）で区切って括弧で囲
みます。

この型シグネチャから分かるのは、 fromIntegral は何らかの整数を引数に
取り、もっと一般的な数を返すということです。この関数は、整数と浮動小数点
数を一緒に扱いたいときにとても役に立ちます。例えば、 length関数はこのよ
うな型宣言を持っています。

length :: [a] -> Int

†3 ［訳注］base-4.5（GHC 7.4.1）から、この制限は撤廃されました。

oyaji (20170810-501DAE64)

34 第 2章 型を信じろ！

そのため、リストの長さを取得して、それに 3.2を加えるような式はエラーに
なります（ Intと浮動小数点数を足し合わせようとしているため）。それをやり
たい場合は fromIntegralを使ってこうします。

ghci> fromIntegral (length [1,2,3,4]) + 3.2
7.2

最後に ――― 型クラスに関するいくつかの注意
型クラスは抽象的なインターフェイスとして定義されているので、1つの型は

いくつもの型クラスのインスタンスになることができるし、1つの型クラスはい
くつもの型をインスタンスとして持てます。例えば、 Char型をインスタンスと
する型クラスはたくさんあって、その中には Eqと Ordクラスがあり、これは 2
つの文字は等値性比較とアルファベット順比較の両方ができるからです。
型をある型クラスのインスタンスにするために、いったん別のインスタンスに
する必要があることがあります。例えば、 Ord クラスのインスタンスになるに
は、先に Eqクラスのインスタンスになる必要があります。言い換えれば、Eqク
ラスのインスタンスであることは Ord クラスのインスタンスになるための必要
条件です。2つのものが順序付けられるということは、それらが等しいかどうか
も分かるはずだ、と考えれば納得できるでしょう。

oyaji (20170810-501DAE64)

第3章
関数の構文

この章では、Haskell の関数を書くための構文を見ていきます。Haskell の
関数は読みやすく、理にかなった記法です。値を手軽に分解する方法、大きな
if/else の連鎖を避ける方法、計算の中間データを一時的に保存して複数回利
用する方法を見ていきます。

3.1 パターンマッチ
パターンマッチはある種のデータが従うべきパ

ターンを指定し、そのパターンに従ってデータを分
解するために使います。

Haskellでは、関数を定義する際にパターンマッ
チを使って、関数の本体を場合分けできます。これ
によってシンプルで読みやすいコードが書けます。
数値、文字、リスト、タプルなど、とても多くのデー
タ型でパターンマッチを使うことができます。例と
して、渡された数が 7かどうか調べる単純な関数を
書いてみましょう。

lucky :: Int -> String
lucky 7 = "LUCKY NUMBER SEVEN!"
lucky x = "Sorry, you're out of luck, pal!"

lucky を呼ぶと、パターンが上から下の順で試されます。渡された値が指定
されたパターンに合致すると、対応する関数の本体が使われ、残りのパターンは
無視されます。最初のパターンに合致するのは 7が渡されたときだけで、その場
合に関数の本体 "LUCKY NUMBER SEVEN!" が使われます。渡された引数が 7 で
なければ 2つ目のパターンに落っこちます。2つ目のは何にでも合致するパター
ンで、引数は xに束縛されます。

35

oyaji (20170810-501DAE64)

36 第 3章 関数の構文

パターンに（ 7のような）具体的な値でなく小文字から始まる名前（ xや y、
または myNumber）を書くと、任意の値に合致するようになります。このパター
ンは与えられた値に常に合致し、その値をパターンに使った名前で参照できるよ
うになります。
先ほどの例の関数であれば if式を使っても簡単に実装できます。では、1か

ら 5が入力されたときはそれを単語として出力し、それ以外なら "Not between

 1 and 5"と出力するような関数ならばどうでしょうか？ パターンマッチなし
ではとてもややこしい if/then/else が必要になるでしょう†1。でもパターン
マッチがあれば、とても単純に書けます。

sayMe :: Int -> String
sayMe 1 = "One!"
sayMe 2 = "Two!"
sayMe 3 = "Three!"
sayMe 4 = "Four!"
sayMe 5 = "Five!"
sayMe x = "Not between 1 and 5"

最後のパターン（ sayMe x）を先頭に持ってくると、この関数は常に "Not

between 1 and 5" を表示するようになってしまいます。あらゆる入力が最初
のパターンに合致してしまって、他のパターンへ落ちていかなくなるからです。
前の章で実装した階乗を計算する関数を覚えていますか？ そこでは nの階乗
を product [1..n] と定義していました。この関数を再帰的に定義することも
できます。関数が再帰的に定義されているとは、その関数の定義の中で自分自身
を呼び出しているということです。数学の階乗関数は、普通はそのように定義
されます。まず、「0の階乗は 1」と定義します。次に、「すべての正の整数の階
乗は、その整数とそれから 1 を引いたものの階乗の積」と定義します。これを
Haskellで実装すると次のようになります。

factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n - 1)

初めて再帰的な関数を定義しました！ Haskell では再帰は重要なので、第 4
章でじっくりと見ていくことにします。
パターンマッチは失敗することもあります。例えば、次のような関数を定義す

ることができます。

†1 ［訳注］手続き型言語だって switch文を使えば簡潔に書けるじゃないかって？ はい、この例に関して
は、そのとおりです。でも、パターンマッチのほうがずっと豊富な記述力があるってことを、おいおい見て
いきますよ！

oyaji (20170810-501DAE64)

3.1 パターンマッチ 37

charName :: Char -> String
charName 'a' = "Albert"
charName 'b' = "Broseph"
charName 'c' = "Cecil"

この関数は一見するとうまく動くように見えますが、予期していない値が入力
されるとエラーになります。

ghci> charName 'a'
"Albert"
ghci> charName 'b'
"Broseph"
ghci> charName 'h'
"*** Exception: tut.hs:(53,0)-(55,21): Non-exhaustive patterns in
function charName

「non-exhaustive patterns（パターンが網羅的でない）」と文句を言われまし
た。おっしゃるとおりです。パターンを作るときは、すべてに合致するパターン
を最後に入れておくべきです。そうすれば予期せぬ入力でプログラムがクラッ
シュすることを防げます†2。

タプルのパターンマッチ
パターンマッチはタプルでも使えます。2つの 2次元空間のベクトル（ペアで

表す）を受け取り、それらを足し合わせる関数を書きたいとします（2つのベク
トルの加算は、x成分と y成分をそれぞれ足し合わせます）。パターンマッチを
知らなければこう書くことになるでしょう。

addVectors :: (Double, Double) -> (Double, Double) -> (Double, Double)
addVectors a b = (fst a + fst b, snd a + snd b)

これでも動きますが、もっと良い方法があります。パターンマッチを使って書
き換えてみましょう。

addVectors :: (Double, Double) -> (Double, Double) -> (Double, Double)
addVectors (x1, y1) (x2, y2) = (x1 + x2, y1 + y2)

こっちのほうが、引数がタプルであることが分かりやすいし、タプルの要素に
適切な名前がついているので読みやすくなっています。これですべてに合致す
るパターンになっていることに注意してください。 addVectors の型は 1 つ目
のと同じく

†2 ［訳注］ -fwarn-incomplete-patternsオプションを使えば、パターンマッチが網羅的でない場合
に警告してもらえます。 -Wallオプションを使えば、そのほかにもたくさんの有用な警告が有効になりま
す。.hsファイルの先頭に {-# OPTIONS -Wall -Werror #-}を付けてコーディングすれば、意図せ
ぬ動作やクラッシュの原因になりがちな箇所を GHCが指摘してくれるので、良い Haskellコードを書く
訓練になりますよ！

oyaji (20170810-501DAE64)

38 第 3章 関数の構文

ghci> :t addVectors
addVectors :: (Double, Double) -> (Double, Double) -> (Double, Double)

なので、 Doubleのペアが 2つ引数にくることは保証済みです。
fstと sndを用いるとペアの要素を分解できました。では、トリプルに対し

てはどうしましょう？ トリプルの 3番目の要素を取り出す関数は提供されてい
ませんが、独自に定義することはできます。

first :: (a, b, c) -> a
first (x, _, _) = x

second :: (a, b, c) -> b
second (_, y, _) = y

third :: (a, b, c) -> c
third (_, _, z) = z

_はリスト内包表記のときと同じ意味です。ここの値はどうでもよいので、使
い捨ての変数を表すために _を使っています†3。

リストのパターンマッチとリスト内包表記
リスト内包表記でも次のようにパターンマッチが使えます。

ghci> let xs = [(1,3),(4,3),(2,4),(5,3),(5,6),(3,1)]
ghci> [a+b | (a, b) <- xs]
[4,7,6,8,11,4]

リスト内包表記のパターンマッチでは、失敗したら単に次の要素に進み、失敗
した要素は結果のリストには含まれません。

ghci> [x*100+3 | (x, 3) <- xs]
[103,403,503]

普通のリストもパターンマッチで使えます。空リスト []、または :を含むパ
ターンと合致させることができます（ [1,2,3] は 1:2:3:[]の構文糖衣だとい
うことを思い出してください）。 x:xsというパターンは、リストの先頭要素を x

に束縛し、リストの残りを xsに束縛します。リストの要素がちょうど 1つだっ
た場合、 xsには空のリストが束縛されます。

NOTE Haskellプログラマは x:xsというパターンを、特に再帰関数と一緒によく使います。
ただし :を含むパターンは、長さが 1以上のリストに対してしか合致しません。

さて、たった今覚えたリストに対するパターンマッチを使って、独自の head

関数を head'という名前で実装してみましょう。

†3 ［訳注］ _は予約語なので通常の変数としては使えません。

oyaji (20170810-501DAE64)

3.1 パターンマッチ 39

head' :: [a] -> a
head' [] = error "Can't call head on an empty list, dummy!"
head' (x:_) = x

関数をロードしたら次のように試せます。

ghci> head' [4,5,6]
4
ghci> head' "Hello"
'H'

head'関数の定義にあるように、複数の変数（そのうちの 1つが _の場合も）
に束縛したいときは丸括弧で囲まなければシンタックスエラーになります。

errorという関数を使っていることにも注目してください。 error関数は文
字列を引数に取り、その文字列を使ってランタイムエラーを生成します。これは
基本的にはプログラムをクラッシュさせるものなので、みだりに使ってはいけま
せん。（でも空リストの headは取れないから仕方ないね！）†4

もう 1つの例として、リストの要素を回りくどくて不便な書式で出力する関数
を書いてみましょう。

tell :: (Show a) => [a] -> String
tell [] = "The list is empty"
tell (x:[]) = "The list has one element: " ++ show x
tell (x:y:[]) = "The list has two elements: " ++ show x ++ " and "

++ show y
tell (x:y:_) = "This list is long. The first two elements are: "

++ show x ++ " and " ++ show y

(x:[])と (x:y:[])は、それぞれ [x]および [x,y]と書くこともできます。
しかし、 (x:y:_)を角括弧を使って書き直すことはできません。このパターン
は長さが 2以上の任意のリストに合致するからです。
この関数を使ってみます。

ghci> tell [1]
"The list has one element: 1"
ghci> tell [True,False]
"The list has two elements: True and False"
ghci> tell [1,2,3,4]
"This list is long. The first two elements are: 1 and 2"
ghci> tell []
"The list is empty"

tell関数は、空のリストにも、単一要素のリストにも、2要素のリストにも、
あるいはもっと多くの要素のリストにも合致するので、安全に使えます。あらゆ

†4［訳注］headなどのエラーを引き起こす可能性のある関数（部分関数）は、後で出てくる Maybeのような失
敗を安全に扱える方法で実装すべきだ、という意見があります。実際、Preludeの部分関数を安全な方法で
再実装した safeという名前の Hackageが用意されています（hackage.haskell.org/package/safe）。

hackage.haskell.org/package/safe

oyaji (20170810-501DAE64)

40 第 3章 関数の構文

る長さのリストをどう扱えばいいか分かっているので、常に意味のある値を返せ
るのです。

3要素のリストを扱う方法しか知らない関数を定義したらどうなるでしょう？
例えばこんな関数です。

badAdd :: (Num a) => [a] -> a
badAdd (x:y:z:[]) = x + y + z

予期しないリストが与えられたときに何が起こるでしょうか。

ghci> badAdd [100,20]
*** Exception: examples.hs:8:0-25: Non-exhaustive patterns in
function badAdd

おっと、かっこ悪い！ これがもし GHCiじゃなくてコンパイルされたプログ
ラムの中で起こってたら、プログラムはクラッシュしていたところです。
リストに対するパターンマッチの最後の注意として、パターンマッチでは ++

演算子を使えません（ ++は 2つのリストをつなげる演算子でしたね）。例えば、
パターン (xs ++ ys)に対して合致させようにも、リストのどの部分を xsに合
致させて、どの部分を ysに合致させればいいか、Haskellに伝えようがありま
せん。 (xs ++ [x,y,z]) や (xs ++ [x]) というパターンなら、リストの性質
から論理的に合致できそうに思えますが、実際にそのような賢い合致はできま
せん。

as パターン
Haskellには

あず
asパターンと呼ばれる特殊なパターンがあります。asパターン

は、値をパターンに分解しつつ、パターンマッチの対象になった値自体も参照し
たいときに使います。as パターンを作るには、普通のパターンの前に名前と @

を追加します。
例えば、 xs@(x:y:ys) のような as パターンを作れます。このパターンは、

x:y:ys に合致するものとまったく同じものに合致しつつ、 xs で元のリスト全
体にアクセスすることもできます。 x:y:ysとタイプしなくてもいいのです。as
パターンの簡単な例を示します。

firstLetter :: String -> String
firstLetter "" = "Empty string, whoops!"
firstLetter all@(x:xs) = "The first letter of " ++ all ++ " is " ++ [x]

関数をロードして試してみましょう。

ghci> firstLetter "Dracula"
"The first letter of Dracula is D"

oyaji (20170810-501DAE64)

3.2 場合分けして、きっちりガード！ 41

3.2 場合分けして、きっちりガード！
関数を定義する際、引数の構造で場合分けするときにはパ

ターンを使います。引数の値が満たす性質で場合分けすると
きには、ガードを使います†5。 性質で場合分けというと何だ
か if式っぽいですし、実際 ifとガードは似ています。
ただし、複数の条件があるときにはガードのほうが if よ
り可読性が高く、パターンマッチとの相性も抜群です。
ガードを使った関数の世界に飛び込んでみましょう。肥満
度指数（BMI）によって異なる叱り方をする関数を定義しま
す。BMIとは、体重（キログラム）を身長（メートル）の 2乗
で割った値です。BMIが 18.5以下なら痩せています。18.5から 25の間なら標
準体重です。BMIが 25から 30は太りすぎで、30以上は肥満です。（BMIを計
算する関数ではなく、計算済みの BMIを受け取って忠告するだけの関数です。）

bmiTell :: Double -> String
bmiTell bmi
| bmi <= 18.5 = "You're underweight, you emo, you!"
| bmi <= 25.0 = "You're supposedly normal.\

\ Pffft, I bet you're ugly!"
| bmi <= 30.0 = "You're fat! Lose some weight, fatty!"
| otherwise = "You're a whale, congratulations!"

ガードには、パイプ文字（ |）とそれに続く真理値式、さらにその式が True

に評価されたときに使われる関数の本体が続きます。式が Falseに評価された
ら、その次のガードの評価に移ります。この繰り返しです。ガードは最低でも 1
つのスペースでインデントする必要があります（読みやすさのためにも、スペー
ス 4つでインデントするのがおすすめです†6）。
例えば、この関数を 24.3という BMIで呼び出した場合、最初に BMIが 18.5

以下であるか調べます。そうではないので、次のガードに移動します。2つ目の
ガードを調べ、24.3は 25.0より小さいので、2つ目の文字列が返されます。
このような複雑な条件式を見ると命令型言語における巨大な if/else の連

鎖を思い出します。ガードのほうがはるかに可読性が高いですよね。長ーい
if/else の連鎖は顰蹙ものですが、問題の定義からしてそのような書き方が避
けられない場合だってあります。そんなときは ifよりガードを使いましょう。

†5 ［訳注］このような場合分けの構文をガードと呼ぶのは、条件を満たす場合にしか先の処理に進ませてく
れない、衛兵さんみたいだからです！

†6 ［訳注］紙面の都合からスペース 2つでインデントしている箇所がいくつかあります。なおガードの 2つ
目では、 \を使って、1行を複数行に分けて入力しています。

oyaji (20170810-501DAE64)

42 第 3章 関数の構文

たいていの場合、関数の最後のガードはすべてをキャッチする otherwiseに
なっています。すべてのガードが Falseに評価されて、最後に全部をキャッチ
する otherwiseもなかったなら、評価は失敗して次のパターンに移ります（こ
れがパターンとガードの相性が良い理由です）。適切なパターンが見つからなけ
ればエラーが投げられます。
もちろん、ガードは複数の引数を取る関数にも使えます。 bmiTell関数を身
長と体重を受け取るように変更して、BMIの計算もするように変更しましょう。

bmiTell :: Double -> Double -> String
bmiTell weight height
| weight / height ^ 2 <= 18.5 = "You're underweight, you emo, you!"
| weight / height ^ 2 <= 25.0 = "You're supposedly normal.\

\ Pffft, I bet you're ugly!"
| weight / height ^ 2 <= 30.0 = "You're fat!\

\ Lose some weight, fatty!"
| otherwise = "You're a whale, congratulations!"

さて、僕の肥満度はどんなかな？

ghci> bmiTell 85 1.90
"You're supposedly normal. Pffft, I bet you're ugly!"

イェイ！ 肥満じゃない！ でも Haskell にブサイクに違いないと蔑まれまし
た。知ったこっちゃない！

NOTE 初心者にありがちな間違いに、関数名と引数の後、ガードの前にイコール（ =）を置
いてしまうというものがあります。これはシンタックスエラーになります。

もう 1 つシンプルな例として、独自の max 関数を定義してみましょう。引数
を 2つ取って大きいほうを返す関数です。

max' :: (Ord a) => a -> a -> a
max' a b

| a <= b = b
| otherwise = a

compare関数もガードを使って実装できます。

myCompare :: (Ord a) => a -> a -> Ordering
a ‘myCompare‘ b

| a == b = EQ
| a <= b = LT
| otherwise = GT

NOTE バッククオートによる中置記法は、関数呼び出しだけでなく、関数定義でも使えます。
それによってコードが読みやすくなるときがあります。

oyaji (20170810-501DAE64)

3.3 where?! 43

ghci> 3 ‘myCompare‘ 2
GT

3.3 where?!
プログラムを書いていると、同じ値を何度も何度も計算するのを避けたいこと

がよくあります。何かを一度だけ計算して、その結果を格納しておくのはとても
簡単です。命令型プログラミング言語なら、計算結果を変数に格納して解決する
ところでしょう。この節では、Haskell の where キーワードを使って計算の中
間結果に名前をつける方法を学習します。
前の節では BMI計算関数をこのように定義しました。

bmiTell :: Double -> Double -> String
bmiTell weight height
| weight / height ^ 2 <= 18.5 = "You're underweight, you emo, you!"
| weight / height ^ 2 <= 25.0 = "You're supposedly normal.\

\ Pffft, I bet you're ugly!"
| weight / height ^ 2 <= 30.0 = "You're fat!\

\ Lose some weight, fatty!"
| otherwise = "You're a whale, congratulations!"

上のコードでは、BMI 計算を 3 回繰り返しています。この値を where キー
ワードを使って変数に束縛し、その変数で BMI計算をしている箇所を置き換え
て、繰り返しを避けましょう。

bmiTell :: Double -> Double -> String
bmiTell weight height
| bmi <= 18.5 = "You're underweight, you emo, you!"
| bmi <= 25.0 = "You're supposedly normal.\

\ Pffft, I bet you're ugly!"
| bmi <= 30.0 = "You're fat! Lose some weight, fatty!"
| otherwise = "You're a whale, congratulations!"
where bmi = weight / height ^ 2

whereキーワードをガードの後に置いて、1つもしくは複数の変数や関数を定
義できます。それら変数や関数の名前はどのガードからも見えます。BMIの計
算方法を少し変えたくなっても、1箇所を変えるだけで済みます。このテクニッ
クにより値に名前がつくので可読性も上がります。しかも、値が一度しか計算さ
れないようになるのでプログラムが速くなります。
なんだったら、もっとたくさん外に出してもかまいません。

oyaji (20170810-501DAE64)

44 第 3章 関数の構文

bmiTell :: Double -> Double -> String
bmiTell weight height
| bmi <= skinny = "You're underweight, you emo, you!"
| bmi <= normal = "You're supposedly normal.\

\ Pffft, I bet you're ugly!"
| bmi <= fat = "You're fat! Lose some weight, fatty!"
| otherwise = "You're a whale, congratulations!"
where bmi = weight / height ^ 2

skinny = 18.5
normal = 25.0
fat = 30.0

NOTE where ブロックの中のすべての変数のインデントが揃えてありますね。インデント
がずれていると、Haskellは混乱してしまい、ブロックの範囲を正しく認識してくれ
ません！

where のスコープ
where節で定義した変数は、その関数からしか見えないので、他の関数の名

前空間を汚染する心配がありません。複数の異なる関数から見える必要のある
変数を定義したい場合は、グローバルに定義する必要があります。
また、whereによる束縛は関数の違うパターンの本体では共有されません。例

えば、名前を引数に取り、その名前を認識できた場合には上品な挨拶を、そうで
なければ下品な挨拶をする関数を考えてみます。こんな定義でどうでしょうか。

greet :: String -> String
greet "Juan" = niceGreeting ++ " Juan!"
greet "Fernando" = niceGreeting ++ " Fernando!"
greet name = badGreeting ++ " " ++ name

where niceGreeting = "Hello! So very nice to see you,"
badGreeting = "Oh! Pfft. It's you."

この関数は書いたとおりには動きません。 whereの束縛は違うパターンの関
数本体で共有されず、whereの束縛での名前は最後の本体からしか見えないから
です。この関数を正しく動くようにするには、 badGreetingと niceGreeting

は次のようにグローバルに定義しなければなりません。

badGreeting :: String
badGreeting = "Oh! Pfft. It's you."

niceGreeting :: String
niceGreeting = "Hello! So very nice to see you,"

greet :: String -> String
greet "Juan" = niceGreeting ++ " Juan!"
greet "Fernando" = niceGreeting ++ " Fernando!"
greet name = badGreeting ++ " " ++ name

oyaji (20170810-501DAE64)

3.4 let It Be 45

パターンマッチと where
where の束縛の中でもパターンマッチを使うことができます。BMI 関数の

where節を次のように書いてもかまいません。

...
where bmi = weight / height ^ 2

(skinny, normal, fat) = (18.5, 25.0, 30.0)

このテクニックの例として、ファーストネームとラストネームを受け取ってイ
ニシャルを返す関数を書いてみましょう。

initials :: String -> String -> String
initials firstname lastname = [f] ++ ". " ++ [l] ++ "."

where (f:_) = firstname
(l:_) = lastname

関数の引数のところで直接パターンマッチすることもできますし、そのほう
が短くて可読性も高くなると思いますが、この例のように whereの束縛でもパ
ターンマッチが使えます。

where ブロックの中の関数
whereブロックの中では定数だけでなく関数も定義できます。健康をテーマ

にしたプログラミングの続きで、体重と身長のペアのリストを受け取って BMI
のリストを返す関数を作りましょう。

calcBmis :: [(Double, Double)] -> [Double]
calcBmis xs = [bmi w h | (w, h) <- xs]

where bmi weight height = weight / height ^ 2

はい、出来上がり！ この例で bmi を定数ではなく関数として導入したのは、
calcBmis関数の引数に対して 1つのの BMIを計算するのではなく、関数に渡
されたリストの要素それぞれに対して、異なる BMIを計算する必要があるから
です。

3.4 let It Be
let 式は where節にとてもよく似ていま

す。 whereは関数の終わりで変数を束縛し、
その変数はガードを含む関数全体から見え
ます。それに対して let 式は、どこでも変
数を束縛でき、そして let 自身も式になり
ます。しかし、 let 式が作る束縛は局所的

oyaji (20170810-501DAE64)

46 第 3章 関数の構文

で、ガード間で共有されません。束縛を行うHaskellの他の構文と同じく、 let

式でもパターンマッチが使えます。
let を使ってみましょう。次の関数は、円柱の表面積を高さと半径から求め

ます。

cylinder :: Double -> Double -> Double
cylinder r h =

let sideArea = 2 * pi * r * h
topArea = pi * r ^ 2

in sideArea + 2 * topArea

let 式は、 let bindings in expressionという形を取ります。 letで定義した
変数は、その let式全体から見えます。
もちろん、 where でも同じものが定義できます。では let と where の違い
は何でしょう？ はじめのうちは、 let は束縛を先に書いて式を後に書くけど
whereはその逆という違いしかないように思えるかもしれません。
本当の違いは、 let式はその名のとおり「式」で、 where節はそうじゃない、

というところです。何かが「式である」というのは、それが値を持つということ
です。 "boo!"は式、 3 + 5も head [1,2,3]も式です。つまり、 let式は次
のようにコード中のほとんどどんな場所でも使えるということです。

ghci> 4 * (let a = 9 in a + 1) + 2
42

let式の便利な使い方をいくつか紹介します。s letはローカルスコープに関数を作るのに使えます。

ghci> [let square x = x * x in (square 5, square 3, square 2)]
[(25,9,4)]s letではセミコロン（ ;）区切りを使えます。これは、複数の変数を 1行

で束縛したいときに便利です。インデントみたいに間延びした構文を使
わずに済みます。

ghci> (let a = 100; b = 200; c = 300 in a*b*c, ⇨
let foo="Hey "; bar = "there!" in foo ++ bar)

(6000000,"Hey there!")s let 式とパターンマッチがあれば、あっという間にタプルを要素に分解
してそれぞれ名前に束縛できます。

ghci> (let (a, b, c) = (1, 2, 3) in a+b+c) * 100
600

ここでは、トリプル (1,2,3)を分解するのに letを使いました。最初の要
素を a、2つ目の要素を b、3つ目の要素を cと呼んでいます。 in a+b+c

oyaji (20170810-501DAE64)

3.4 let It Be 47

の部分は、 let式全体が値 a+b+cを持つ、と言っています。最後に、そ
の値に 100を掛けています。s let 式はリスト内包表記の中でも使えます。この用法についてはすぐ後
で詳しく見ていきます。

こんなに使い勝手が良いものなら、いつも let 式を使えばよいのではないで
しょうか？ うーん。まず、 let式は「式」であり、そのスコープに局所的なの
で、ガードをまたいでは使えません。また、関数の前ではなく後ろで部品を定義
するのが好きだから whereを使うという人もいます。そのほうが関数の本体が
名前と型宣言に近くなるので、コードが読みやすくなります。

リスト内包表記での let
体重と身長のペアのリストを計算する先ほどの例を、 whereで関数を定義す
るのではなく、リスト内包表記中の letを使って書き換えてみましょう。

calcBmis :: [(Double, Double)] -> [Double]
calcBmis xs = [bmi | (w, h) <- xs, let bmi = w / h ^ 2]

リスト内包表記が元のリストからタプルを受け取り、その要素を w と h に束
縛するたびに、 let式は w / h ^ 2を変数 bmiに束縛します。それから bmiを
リスト内包表記の出力として書き出しているだけです。
リスト内包表記の中の let を述語のように使っていますが、これはリストを
フィルタするわけではなく、名前を束縛しているだけです。 let で定義された
名前は、出力（ |より前の部分）とその letより後ろのリスト内包表記のすべて
から見えます。このテクニックを使うと、次のように、肥満な人の BMIのみを
返すように関数を変えることができます。

calcBmis :: [(Double, Double)] -> [Double]
calcBmis xs = [bmi | (w, h) <- xs, let bmi = w / h ^ 2, bmi > 25.0]

リスト内包表記の (w, h) <- xs の部分はジェネレータと呼ばれます。 let

の束縛よりも前に定義されているので、変数 bmi はジェネレータからは参照で
きません。

GHCi での let
GHCiで直接関数や定数を定義するときは、 let式の inの部分を省略できま
す。省略した場合、定義した名前はそれ以降の対話的なセッション全体から見え
るようになります。

ghci> let zoot x y z = x * y + z

oyaji (20170810-501DAE64)

48 第 3章 関数の構文

ghci> zoot 3 9 2
29
ghci> let boot x y z = x * y + z in boot 3 4 2
14
ghci> boot
<interactive>:1:0: Not in scope: ‘boot'

最初の行では inの部分を省略したので、GHCiは「この行では zootは使わ
ないんだな」と理解し、以降のセッションのために zootを覚えておきます。し
かし、2つ目の let式は inパートを含んでいて、 bootに引数を渡して呼んで
います。 in部分が省略されていない let式は、それ自体が値を表す式なので、
GHCiはその値を表示したわけです。

3.5 case 式
case 式を使うと、変数の指定した値に対する

コードブロックを評価できます。要するに case

式は、コード中のどこでもパターンマッチが使え
る構文です。多くの言語（C/C++や Java）にも
似たような case 文があるので、この概念にはお
馴染みかもしれません。

Haskell の case 式は、その一歩先を行くもの
です。 case式という名前が示すとおり、 if/else式や let式と同じく caseも
式なのです。さらに、 case式では変数の値に基づいて評価を分岐させるだけで
なく、パターンマッチも使えます。
値を取り、パターンマッチし、その結果に基づいてコード片を評価するとい
う点において、 case式は関数の引数に対するパターンマッチとかなり似ていま
す。実のところ、あれは case式の構文糖衣になっています。例えば、次の 2つ
のコード片はまったく同じで、交換可能です。

head' :: [a] -> a
head' [] = error "No head for empty lists!"
head' (x:_) = x

head' :: [a] -> a
head' xs = case xs of [] -> error "No head for empty lists!"

(x:_) -> x

case式の構文を示します。

case expression of pattern -> result
pattern -> result
pattern -> result
...

oyaji (20170810-501DAE64)

3.5 case式 49

実にシンプルです。式に合致した最初のパターンが使われます。 case式に合
致するパターンが見つからなかった場合、ランタイムエラーが発生します。
引数によるパターンマッチが使えるのは関数を定義するときだけですが、

case式はどこでも使えます。例えば、式の途中でパターンマッチをするのに使
えます。

describeList :: [a] -> String
describeList ls = "The list is "

++ case ls of [] -> "empty."
[x] -> "a singleton list."
xs -> "a longer list."

この例の case式は次のように動作します。まず lsは空リストのパターンに
対して調べます。もし ls が空なら、 case 式全体の値は "empty" になります。
ls が空リストでなければ、1 要素のリストのパターンに対して調べます。この
パターンマッチが成功したら、 case 式の値は "a singleton list" に評価さ
れます。どちらでもなければ、すべてに合致するパターン xs が適用されます。
最後に、 case 式の結果は文字列 "The list is" と連結されます。 case 式は
値を表現しているので、文字列 "The list is"と case式に対して ++が利用で
きるのです。
関数定義でのパターンマッチは case 式と同じように使えるので、

describeListは次のようにも定義できます。

describeList :: [a] -> String
describeList ls = "The list is " ++ what ls

where what [] = "empty."
what [x] = "a singleton list."
what xs = "a longer list."

この関数は、構文こそ違いますが、前の例と同じように動作します。関数 what

が lsを引数に呼び出されて、それからパターンマッチが行われます。関数が文
字列を返すと、それが "The list is"と連結されます。

oyaji (20170810-501DAE64)

oyaji (20170810-501DAE64)

第4章
Hello 再帰!

この章では再帰について見ていくことにします。再帰が Haskell プログラミ
ングでなぜ重要なのか、問題を再帰的に考えることによって、とても簡潔でエレ
ガントな解法を見つける方法を学びます。
再帰とは、関数の定義の中で自分自身

を呼び出す、という関数の定義の仕方で
す。その関数は、自分自身を呼び出すこ
とになります。再帰が何なのかまだよく
分からないなら、この段落をもう一度読
んでください。（冗談ですよ！）
冗談はさておき、関数を再帰的に定義

するには、解こうとする問題を同じ種類
のより小さな問題に分解し、それら部分
問題を解くことを考えます。必要なら、それらをさらに分解していきます。最終
的には、問題の基底部、つまりこれ以上分解できなくて解を明示的に（再帰を使
わずに）定義しなければならないケース（複数あるかも）に辿り着きます。
数学における定義には再帰がちょくちょく出てきます。例えば、フィボナッ

チ数列は次のように再帰的に定義できます。最初の 2 つのフィボナッチ数は
F (0) = 0と F (1) = 1です。つまり、フィボナッチ数列の 0番目と 1番目の数
はそれぞれ 0と 1である、と定義します。これらが基底部になります。
次に、0と 1以外のあらゆる自然数に対して、対応するフィボナッチ数を直前

の 2 つのフィボナッチ数の和として定義します。つまり、F (n) = F (n − 1) +
F (n− 2)ということです。例えば、F (3)は F (2) + F (1)であり、これはさらに
(F (1) + F (0)) + F (1)に分解されます。再帰を使わずに定義されたフィボナッ
チ数だけになったので、これで無事に F (3)は 2であると言えます。

51

oyaji (20170810-501DAE64)

52 第 4章 Hello再帰!

Haskellでは再帰が重要です。なぜなら、Haskellでは命令型言語のように計
算をどうやってするかを指定するのではなく、求めるものが何であるかを宣言
して計算を行うからです。Haskell の目的は、計算を実行するステップをコン
ピュータに示すことではなく、欲しい結果が何であるかを直接定義することであ
り、そのために再帰的な方法をよく使うのです。

4.1 最高に最高！
すでに Haskell にある関数を例に、どうすれば自分たちでその関数を書ける

か、脳内のギアを「R」に入れて考えてみましょう。「R」はバック（reverse）で
はなく再帰（recursion）ですよ。

maximum関数は順序の付いた値（ Ord型クラスのインスタンス）のリストを
受け取り、その中で一番大きな値を返します。これは、再帰を使うととてもエレ
ガントに表現できます。
再帰的な解法の前に、命令的に定義したらどういう実装になるか考えてみるこ
とにしましょう。おそらく現在の最大値を保持するための変数を用意し、リスト
のすべての要素についてループして、現在の要素がこれまでの最大値よりも大き
ければ最大値を現在の値で更新していくことになると思います。ループが終了
した時点で変数に保持されている値が結果の値になります。
では、再帰的に定義する方法を見ていきましょう。最初に基底部を定義しなけ
ればなりません。単一要素のリストに対する最大値は、その唯一の要素と同じ値
です。では、もっと要素がたくさんある場合は？ その場合は、リストの先頭要
素（head）と残りのリスト（tail）の最大値とでどちらが大きいかを調べます。
再帰的に定義した maximum'関数のコードはこうなります。

maximum' :: (Ord a) => [a] -> a
maximum' [] = error "maximum of empty list!"
maximum' [x] = x
maximum' (x:xs) = max x (maximum' xs)

見てのとおり、パターンマッチは再帰関数の定義にもってこいです。合致と値
の分解ができるので、最大値を見つけるという問題を、関連するいくつかのケー
スと部分問題とに簡単に分解できます。
最初のパターンでは、リストが空ならプログラムはクラッシュすると言ってい
ます。空リストの最大値なんて答えようがないので、これでつじつまが合ってい
ます。2つ目のパターンでは、 maximum'に単一要素のリストが渡されたらその
唯一の要素を返すと言っています。

3つ目のパターンで再帰が出てきます。リストは headと tailとに切り離され
ます。headを x、tailを xsと呼んでいます。それから、お馴染みの max関数

oyaji (20170810-501DAE64)

4.2 さらにいくつかの再帰関数 53

です。 max 関数は 2 つの引数を取り、大きいほうを返します。 x が xs の最大
要素よりも大きければそれを返し、そうでなければ xs の最大要素を返します。
でも、 maximum'はどうやって xsの最大要素を見つけるのでしょうか？ 単純で
す。自分自身を呼び出す、再帰です！

maximum'の動作を思い描けない人もいるでしょうから、具体的な例でやって
みましょう。 maximum'を [2,5,1]で呼び出すと、最初の 2つのパターンには
合致しません。3つ目のパターンに合致して、リストは 2と [5,1]に分解され、
maximum'が [5,1]に対して呼び出されます。
新しく呼び出した maximum'でも 3つ目のパターンに合致して、再びリストが

分解されます。今回は 5と [1]に分解され、 maximum'が [1]に対して再帰的
に呼ばれます。これは単一要素のリストなので、基底部に合致し、結果として 1
が返ります。
さて、今度は上位にさかのぼります。 5と 1を max関数を使って比較します。

1 は再帰的な呼び出しの返り値です。 5 のほうが大きいので、 [5,1] の最大値
は 5であると分かります。
最後に、 2と、 [5,1]の最大値 5とを比較します。これでもともとの問題の
答が得られます。 5は 2よりも大きいので、 5が [2,5,1]の最大値だと分かり
ます。

4.2 さらにいくつかの再帰関数
再帰的な考え方が分かってきたところで、このやり方でもういくつか関数を実

装してみましょう。 maximum と同じく Haskell にすでに存在する関数ですが、
再帰筋群の再帰筋肉の再帰筋繊維を鍛えるべく自分たちで実装していきます。

replicate
手始めに replicate を実装します。 replicate は Int と値を取り、複製

（replicate）という関数名のとおり、その値を（指定された数だけ）繰り返し
たリストを返します。例えば replicate 3 5 は、3 つの 5 からなるリスト

oyaji (20170810-501DAE64)

54 第 4章 Hello再帰!

[5,5,5]を返します。
基底部を考えましょう。0 以
下の回数だけ複製しろと要求
されたときに何を返せばいいか
は、すぐに分かります。何かを
0 回複製しようとしたら、空の
リストが得られるべきです。負
の数に対しても空のリストを返
すと定義することにします。0
回よりも少ない回数の繰り返し
には意味がないからです。
それ以外の一般の場合、 x を

n回繰り返したリストは、 xを headに、 xを n-1回繰り返したリストを tailに
して構築したリストです。次のようなコードになります。

replicate' :: Int -> a -> [a]
replicate' n x

| n <= 0 = []
| otherwise = x : replicate' (n-1) x

負のケースに対応するために、ここではパターンではなくガードを使ってい
ます。

take
次は takeを実装しましょう。この関数は指定されたリストから指定された数

の要素を返します。例えば、 take 3 [5,4,3,2,1]は [5,4,3]を返します。リ
ストから 0 よりも少ない要素を取り出そうとした場合には空のリストを返しま
す。空のリストから何かを取り出そうとした場合にも空のリストを返します。こ
れら 2つが基底部です。では関数を書いてみましょう。

take' :: Int -> [a] -> [a]
take' n _

| n <= 0 = []
take' _ [] = []
take' n (x:xs) = x : take' (n-1) xs

0以下のときに空のリストを返すという 1つ目のパターンでは、リストの値を
合致させるプレースホルダとして _を使っています。この条件では、リストの値
が何であるかにはまったく関心がないからです。また、 otherwiseなしでガー
ドを使っていることにも注意してください。これは n が 0 よりも大きいときは
合致に失敗して次のパターンに移るようにするためです。

oyaji (20170810-501DAE64)

4.2 さらにいくつかの再帰関数 55

2つ目のパターンは、空のリストに対してはどんな数がきても空のリストを返
すことを示しています。

3つ目のパターンは、リストを headと tailに分解します。headを x、tailを
xsと呼びます。それから、「リストから n要素取り出したものは、 xを 1つ目の
要素にして、 xsから n-1要素を取り出したリストを残りの要素にしたリストと
同じである」と定義しています。

reverse
reverse関数はリストを取り、同じ要素で逆順のリストを返す関数です。ま

たまた空リストが基底部になります。空のリストを逆にしたものは、やはり空の
リストだからです。関数の残りの部分はどうしましょう？ 元のリストを head
と tailに分解すれば、tailを逆順にして後ろに headをくっつけたものが逆順の
リストになりますよね。

reverse' :: [a] -> [a]
reverse' [] = []
reverse' (x:xs) = reverse' xs ++ [x]

repeat
repeat 関数は要素を受け取り、その要素から無限リストを作る関数です。

repeatの再帰的実装は実に簡単です。

repeat' :: a -> [a]
repeat' x = x : repeat' x

repeat 3 の呼び出しは、 3 から始まり、無限個の 3 を tail とするリストを
返します。なので、 repeat 3の呼び出しは 3 : repeat 3に評価され、さらに
3 : (3 : (3 : repeat 3)) という具合に評価されていきます。 repeat 3 の
評価は終了しません。しかし、take 5 (repeat 3)は 5つの 3からなるリスト
に評価されます。これは本質的に、 replicate 5 3の呼び出しと似ています。
これは基底部のない再帰を利用して無限リストを作る良い例です。どこか途
中で切ることだけは忘れずに。

oyaji (20170810-501DAE64)

56 第 4章 Hello再帰!

zip
zipは第 1章に出てきたリスト関数です。2つのリストを引数に取り、これら

を綴じ合わせ（zip）て返します。例えば zip [1,2,3] [7,8]は [(1,7),(2,8)]

を返します（長いほうのリストは短いほうのリストの長さに切り詰められます）。
何かを空のリストと zip すると、単に空のリストが返ります。これが基底部
になります。しかし、 zipは 2つのリストを引数に取るので、実際には 2つの
基底部があります。

zip' :: [a] -> [b] -> [(a,b)]
zip' _ [] = []
zip' [] _ = []
zip' (x:xs) (y:ys) = (x,y) : zip' xs ys

最初の 2つのパターンが基底部です。1つ目か 2つ目のリストが空なら、空の
リストを返します。3つ目のパターンは、「2つのリストを zipしたものとは、そ
れぞれの head のペアに、それぞれの tail を zip したものをつなげたものであ
る」と定義しています。
例えば、zip'を [1,2,3]と ['a','b']で呼び出したら、この関数は (1,'a')

を結果の最初の要素として構築し、それから [2,3] と [b] を zip して残りの
結果を得ます。さらにもう 1 回の再帰呼び出しの後、 [3] と [] を zip し
ようとしますが、これは 1 つ目の基底部に合致します。それから最終結果が
(1,'a') : ((2,'b') : []) と計算され、これは [(1,'a'),(2,'b')] と同じ
です。

elem
標準ライブラリにある関数をもう 1つ実装してみましょう。 elemです。この

関数は値とリストを受け取り、その値がリストに含まれるかを調べます。またも
やこれも、空のリストが基底部です。空のリストは値を含まないので、どう考え
ても探している値を含みません。一般のケースでは、探したい値が幸運にも先頭
にあるかもしれませんが、そうじゃない場合は tailにあるか調べる必要がありま
す。これがそのコードです。

elem' :: (Eq a) => a -> [a] -> Bool
elem' a [] = False
elem' a (x:xs)

| a == x = True
| otherwise = a ‘elem'‘ xs

とても単純です。探しものが先頭になければ、tailを調べます。空のリストに
辿り着いたなら、結果は Falseです。

oyaji (20170810-501DAE64)

4.3 クイック、ソート！ 57

4.3 クイック、ソート！
順序付けされた要素（数など）のリストを

ソートする問題は、自然と再帰的な解決方法
へ行き着きます。リストの再帰的なソート
にはいろいろなアプローチがありますが、最
もクールな方法の 1 つであるクイックソー
トを見ていくことにします。はじめにアル
ゴリズムがどのように動作するのかを見て、
それから Haskellで実装していきます。

アルゴリズム
クイックソートのアルゴリズムは次の

ように動作します。ソートしたいリストを
[5,1,9,4,6,7,3] としましょう。最初の要
素である 5を選択して、それから、残りのリ
ストの中で 5 以下の要素を左に置きます。次に、 5 より大きい要素を右に置き
ます。この操作によって [1,4,3,5,9,6,7]というリストが得られます。
この例における 5はピボット（軸）と呼ばれます。他の要素と比較して左右に
振り分けるときの軸になっているからです。ピボットに最初の要素を使う唯一
の理由は、パターンマッチで簡単に取り出せるからです。実際にはどの要素をピ
ボットにしてもかまいません†1。
次ページの図は、前の例に対してクイックソートがどのように動作するかを

示しています。 [5,1,9,4,6,7,3]をソートしたいとき、まず、最初の要素をピ
ボットとして選択します。それから、それを [1,4,3]と [9,6,7]でサンドイッ
チします。それが済んだら、 [1,4,3]と [9,6,7]をそれぞれ同じ方法でソート
します。

[1,4,3]をソートするのに、最初の要素 1をピボットとして選択し、 1以下
の要素からなるリストを作ります。 1は [1,4,3]の中で一番小さい要素なので、
これは空のリスト []になります。ピボットの右に置くのは、 1より大きい要素
からなる [4,3]です。今度は [4,3]をまた同じようにソートします。やはり最
終的に空のリストになるまでバラバラにしてくっつけ直します。

†1 ［訳注］所要時間の期待値をO(N log N)で抑えるためには、ピボットをランダムに選ぶなどの工夫が必
要です。

oyaji (20170810-501DAE64)

58 第 4章 Hello再帰!

こうしてアルゴリズムは 1 の右に配置するリストを返します。 1 の左は空リ
ストなので、リスト [1,3,4]が得られました。これはソートされてます。そし
て 5の左側にあります。

5の右側も同様にソートすれば、完全なソート済みリスト [1,3,4,5,6,7,9]

が得られるでしょう。

コード
クイックソートのアルゴリズムに詳しくなったところで、Haskellでの実装に

飛び込んでみましょう。

quicksort :: (Ord a) => [a] -> [a]
quicksort [] = []
quicksort (x:xs) =

let smallerOrEqual = [a | a <- xs, a <= x]
larger = [a | a <- xs, a > x]

in quicksort smallerOrEqual ++ [x] ++ quicksort larger

関数の型シグネチャ†2は quicksort :: (Ord a) => [a] -> [a]で、以前に
見たように空のリストが基底部です。

xより小さいか等しい要素を左に置きたいので、その要素を取り出すのにリス
ト内包表記 [a | a <- xs, a <= x] を使っています。このリスト内包表記で
は、 xs（ピボット以外の全要素）から要素を取り出して、 a <= xの条件を満
たす要素だけを残します。 xより大きい要素も同じ要領で求めています。

let 束縛を使って、2 つのリストに分かりやすい名前 smallerOrEqual と
larger をつけています。最後に、リスト連結演算子（ ++ ）と quicksort 関
数自身を再帰的に適用し、 smallerOrEqual をソートしたリスト、ピボット、
largerをソートしたリストの順につないで最終的なリストを構築します。

†2 ［訳注］型を表す文字列のこと。

oyaji (20170810-501DAE64)

4.4 再帰的に考える 59

作った関数が正しく動くか試運転してみましょう。

ghci> quicksort [10,2,5,3,1,6,7,4,2,3,4,8,9]
[1,2,2,3,3,4,4,5,6,7,8,9,10]
ghci> quicksort "the quick brown fox jumps over the lazy dog"
" abcdeeefghhijklmnoooopqrrsttuuvwxyz"

ね、言ったとおりになったでしょ！

4.4 再帰的に考える
この章ではかなりたくさん再帰を使ってきました。気づいたかもしれません

が、再帰を書くには定跡があります。まず、再帰に頼らない自明な解を持つ基底
部から始めます。例えば、「空のリストをソートしたものは空のリストである」。
だって、ほかに考えられないもの！
それから、問題を 1つもしくはそれ以上の部分問題に分解し、自分自身を適用

することによって、それらの部分問題を再帰的に解きます。最後に、最終的な解
を部分問題の解から構築します。例えばソートの場合なら、リストを 2つのリス
トとピボットに分解します。それらのリストを再帰的にソートして、結果が得ら
れたら、1つにつなげて大きなソート済みリストにします。

再帰を使う際の定跡は、まず基底部を見極め、
次に、解くべき問題をより小さな部分問題へと分
割する方法を考えることです。基底部と部分問題
さえ正しく選んだなら、全体として何が起こるか
の詳細を考える必要はありません。部分問題の解
が正しいという保証をもとに、より大きな最終問
題の解を構築すればよいだけです。

oyaji (20170810-501DAE64)

oyaji (20170810-501DAE64)

第5章
高階関数

Haskellの関数は、引数として関数を取ったり返り値として関数を返したりで
きます。このような関数は高階関数と呼ばれます。高階関数は、問題を解決しプ
ログラムを考察するための実に強力な手段であり、Haskellのような関数型プロ
グラミング言語を使う際になくてはならないものです。

5.1 カリー化関数
Haskellのすべての関数は、公式には引数を

1つだけ取ることになっています。しかし、こ
れまでの章で複数の引数を取る関数を定義し
てきました。どうなっているんでしょうか？
実は、巧妙な仕掛けがあるんです！ 複数の

引数を受け取れるかのように見えた関数は、
実はすべてカリー化された関数だったのです。
カリー化関数は、複数の引数を取る代わりに、
常にちょうど 1 つの引数を取る関数です。カ
リー化関数が呼び出されると、その次の引数を
受け取る関数を返します。その繰り返しです。
例を使って説明するのが一番でしょう。いつものように max 関数さんにご登

場願います。 max関数は、一見すると 2つの引数をもらって大きいほうを返す
関数のように見えます。例えば max 4 5という式を考えてみましょう。これは
関数 maxを、2つの引数 4と 5で呼び出しています。最初に、 maxが値 4に適
用されます。 maxが 4に適用されると、その実際の返り値は、 5に適用するた
めの別の関数です。この関数が 5 に適用されて最終的な数値が返ります。結果
として、次の 2つの呼び出しは等価になります。

61

oyaji (20170810-501DAE64)

62 第 5章 高階関数

ghci> max 4 5
5
ghci> (max 4) 5
5

これがどのように動作するのか理解するために、 max 関数の型を調べてみま
しょう。

ghci> :t max
max :: (Ord a) => a -> a -> a

これは次のようにも書けます。

max :: (Ord a) => a -> (a -> a)

矢印 ->を型シグネチャに含むものはすべて関数
です。 つまり、矢印の左側にあるものを引数に取
り、右側にあるものを型とする値を返します。 a

-> (a -> a)のようなものを見れば、これは a型の
値を引数に取る関数であり、「 a型の値を引数に取
り a型の値を返す関数」を返すのだと分かります。
それで、これは何がうれしいのでしょうか？ ひ
らたくいうと、関数を本来より少ない引数で呼び出
したときに部分適用された関数が得られることです。この部分適用された関数
は、残りの変数を引数として取る関数です。例えば、 max 4としたとしましょ
う。これは 1引数の関数を返します。部分適用（関数を本来より少ない引数で呼
び出すこと）を使うと、関数をその場でお手軽に作り出して、それを他の関数に
渡せます。
次の小さい単純な関数を見てください。

multThree :: Int -> Int -> Int -> Int
multThree x y z = x * y * z

multThree 3 5 9あるいは ((multThree 3) 5) 9を呼び出すと実際には何
が起こるでしょうか？ 最初に、 multThreeが 3に適用されます。スペースで区
切られているからです。これにより「引数を 1つ取って関数を返す関数」が返り
ます。それから、この関数が 5 に適用されます。これにより「引数を 1 つ取っ
てそれに 3と 5を掛けた数を返す関数」ができます。その関数が 9に適用され、
135が最終的な結果になります。
関数は、何か材料を受け取って何かを作り出す小さな工場だと考えることがで
きます。この比喩を使うと、「 multThree に数 3 を与えたら、数ではなくて、
ちょっと小さくなった別の工場が出てきた」と言えます。そのちょっと小さな工

oyaji (20170810-501DAE64)

5.1 カリー化関数 63

場は、数 5を受け取り、また別の工場を作り出します。3つ目の工場は数 9を受
け取り、最終結果である数 135を作り出します。
この関数の型は次のようにも書けることを思い出してください。

multThree :: Int -> (Int -> (Int -> Int))

->の前にある型（もしくは型変数）は関数が受け取る値の型で、後ろにある
のは返り値の型です。なので、この関数は Int 型の値を受け取り、 (Int ->

(Int -> Int)という型を持つ関数を返します。同様に、この関数は Int型の値
を受け取り、 Int -> Intという型の関数を返します。最後に、この関数は Int

型の値を受け取り、 Int型の値を返します。
本来より少ない引数で関数を呼び出すことによって新しい関数を作る例を見
ていくことにしましょう。

ghci> let multTwoWithNine = multThree 9
ghci> multTwoWithNine 2 3
54

この例で、式 multThree 9 の結果は 2 引数の関数になります。この関数に
multTwoWithNine という名前をつけています。 multThree 9 は 2 つの引数を
取る関数だからです。もし引数が 2 つとも与えられたら、それらを掛け合わせ
て、それから 9が掛けられます。 multTwoWithNineは multThreeを 9に適用
したものだからです。

Intを引数に取って 100と比較する関数を作りたいときはどうすればいいで
しょうか？ これは次のように書けます。

compareWithHundred :: Int -> Ordering
compareWithHundred x = compare 100 x

例として、この関数を 99で呼び出してみましょう。

ghci> compareWithHundred 99
GT

100は 99より大きいので、この関数は GT、つまり「より大きい」を返します。
では、 compare 100が何を返すか考えてみましょう。答は、「数を引数に取り

100と比較する関数」です。これは上のサンプルで定義したものとまったく同じ
です。言い換えると、次の定義は前の定義と等価です。

compareWithHundred :: Int -> Ordering
compareWithHundred = compare 100

型の宣言は同じままです。なぜなら、 compare 100 は関数を返すからです。
compareは (Ord a) => a -> (a -> Ordering)という型を持ちます。これを

oyaji (20170810-501DAE64)

64 第 5章 高階関数

100に適用すると、「数を引数に取り Orderingを返す関数」が得られます。

セクション（という名のセクション）
中置関数に対しても、セクションという機能を使って部分適用することができ

ます。中置関数をセクションするには、片側だけに値を置いて括弧で囲むだけで
す。これで引数を 1つ、値を置かなかった側に取る関数ができます。つまらない
例を 1つ。

divideByTen :: (Floating a) => a -> a
divideByTen = (/10)

次のコードで分かるように、 divideByTen 200は 200 / 10もしくは (/10)

 200と等価です。

ghci> divideByTen 200
20.0
ghci> 200 / 10
20.0
ghci> (/10) 200
20.0

もう 1 つ例を見てみましょう。次の関数は与えられた文字が大文字かどうか
調べます。

isUpperAlphanum :: Char -> Bool
isUpperAlphanum = (‘elem‘ ['A'..'Z'])

セクションで唯一気をつけなければならないのは、 -（負の数、マイナス）演
算子と同時に使うときです。 (-4)は、セクションの定義から考えると、数を受
け取ってそれから 4 を引く関数になるでしょう。しかし (-4) は利便性のため
に、マイナス 4を意味することになっています。なので、引数から 4を引き算す
る関数を作りたいときには、subtract関数を (subtract 4)のように部分適用
します。

関数を表示する
今までのところ、部分適用した関数は何かしらの名前に束縛して、それから残

りの引数を与えていました。しかし、関数そのものをターミナルに表示したこと
はありません。ここらでやってみませんか？ letで名前をつけたり、別の関数
に渡したりせずに、 multThree 3 4をそのまま GHCiに打ち込むと何が起こる
でしょう？

oyaji (20170810-501DAE64)

5.2 高階実演 65

ghci> multThree 3 4
<interactive>:1:0:

No instance for (Show (a -> a))
arising from a use of ‘print' at <interactive>:1:0-12

Possible fix: add an instance declaration for (Show (a -> a))
In the expression: print it
In a 'do' expression: print it

GHCiは、この式が a -> aの型の関数を生成したけど、それをどうやって画
面に表示したらいいのか分からない、と言っています。関数は Show型クラスの
インスタンスではないので、いい感じに関数を表現する文字列が得られないので
す。これは、例えば 1 + 1 のような式を入力した場合とは異なります。この場
合 GHCiは、式の結果として 2を計算し、それから 2に対して showを呼んで、
数のテキスト表現を得ます。 2のテキスト表現は単に文字列 "2"なので、これ
がスクリーンに表示されます。

NOTE カリー化関数と部分適用の働きを完全に理解しておいてください。この 2つは本当に
重要です！

5.2 高階実演
すでに説明したとおり、Haskellでは関数は別の関数を引数として受け取るこ

とも、返り値として関数を返すこともできます。このコンセプトの実演として、
関数を受け取り、それを 2回適用する関数を書いてみましょう。

applyTwice :: (a -> a) -> a -> a
applyTwice f x = f (f x)

型宣言に気をつけてください。 ->は右結合なの
で、これまでの例では関数の型を宣言するときに括
弧は必要ありませんでした。しかし、ここでの括弧
は必須です。これは、関数の最初の引数が「1つ引
数を取り、同じ型の値を返す関数（ a -> a ）」だ
ということを示しています。2つ目の引数は何か a

型の値で、返り値も a型です。 aは何の型、つまり
Intでも Stringでも、あるいはもっと他の型でも
かまいません。しかし、すべての aは同じ型でなけ
ればならないことに注意しましょう。

NOTE 今や読者の皆さんは、引数が複数あるように見える関数が実際には単一の引数を受け
取り部分適用された関数を返すという舞台裏を知っています。でも話を単純にするた
めに、引き続き関数が複数の引数を受け取るかのように説明することにします。

oyaji (20170810-501DAE64)

66 第 5章 高階関数

applyTwice 関数はとても単純です。単に引数 f を関数として使い、 f と x

をスペースで区切り、 xにそれを適用しているだけです。それからその結果に f

を再度適用します。この関数の動作例をいくつか示します。

ghci> applyTwice (+3) 10
16
ghci> applyTwice (++ " HAHA") "HEY"
"HEY HAHA HAHA"
ghci> applyTwice ("HAHA " ++) "HEY"
"HAHA HAHA HEY"
ghci> applyTwice (multThree 2 2) 9
144
ghci> applyTwice (3:) [1]
[3,3,1]

部分適用のすごさと実用性が歴然と分かります。1引数の関数を渡す必要があ
るのなら、部分適用を使って 1引数の関数を作り、それに渡せばいいのです。例
えば、 +は 2つの引数を受け取りますが、この例では、セクションを使った部分
適用で 1つだけ引数を与えています。

zipWithを実装する
高階プログラミングを使って、標準ライブラリにある zipWithという素晴ら

しく便利な関数を実装してみましょう。 zipWithは関数と 2つのリストを引数
に取り、2つのリストの各要素にその関数を適用することで、2つのリストを 1
つに結合します。これが実装です。

zipWith' :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith' _ [] _ = []
zipWith' _ _ [] = []
zipWith' f (x:xs) (y:ys) = f x y : zipWith' f xs ys

最初に型宣言を見てみましょう。1つ目の引数は、引数を 2つ取り値を 1つ返
す関数です。その 2つの引数は同じ型でも違う型でもかまいません。 zipWith'

の 2つ目と 3つ目の引数はリストです。返り値もまたリストです。
最初のリストは a型の値のリストでなければなりません。なぜなら、リストの

結合に使う関数が第一引数として aという型を取るからです。2つ目の引数は b

型の値のリストでなければなりません。これも同様に、結合に使う関数の第二引
数が bという型だからです。結果は c型の要素のリストになります。

NOTE もし関数（特に高階関数）を書いていて、その型がよく分からなくなったら、型宣言
を省略し、 :tを使って Haskellに推論させればいいことを思い出しましょう。

この関数は通常の zip関数に似ています。基底部は同じですが、1つ引数が増
えています（結合に使う関数）。しかし、その引数は基底部では使わないので、_

oyaji (20170810-501DAE64)

5.2 高階実演 67

を使って無視しています。最後のパターンの関数の本体も zipに似ていますが、
(x, y)の代わりに f x yを返します。

zipWith'関数にはいろんな仕事をさせられます。これはほんの数例です。

ghci> zipWith' (+) [4,2,5,6] [2,6,2,3]
[6,8,7,9]
ghci> zipWith' max [6,3,2,1] [7,3,1,5]
[7,3,2,5]
ghci> zipWith' (++) ⇨

["foo ", "bar ", "baz "] ["fighters", "hoppers", "aldrin"]
["foo fighters","bar hoppers","baz aldrin"]
ghci> zipWith' (*) (replicate 5 2) [1..]
[2,4,6,8,10]
ghci> zipWith' (zipWith' (*)) ⇨

[[1,2,3],[3,5,6],[2,3,4]] [[3,2,2],[3,4,5],[5,4,3]]
[[3,4,6],[9,20,30],[10,12,12]]

1つの高階関数を実に多くの用途に使えることが分かりますね。

flipを実装する
今度は、これまた標準関数に含まれている flipを実装します。 flip関数は、

関数を引数に取り、元の関数と似ているけど最初の 2つの引数が入れ替わった関
数を返します。このようにして実装できます。

flip' :: (a -> b -> c) -> (b -> a -> c)
flip' f = g

where g x y = f y x

型宣言から、 flip' は「 a 型と b 型の値を引数に取る関数」を引数に取り、
「 b 型と a 型の値を引数に取る関数」を返します。なお、関数はデフォルトで
カリー化されているため、2つ目の括弧は実際には必要ありません。矢印 ->は
デフォルトで右結合なので、 (a -> b -> c) -> (b -> a -> c) は (a -> b

 -> c) -> (b -> (a -> c))、あるいは (a -> b -> c) -> b -> a -> cと
同じものです。上のコードでは、g x y = f y xと書きました。ということは、
f y x = g x y もまた成り立ちますよね？ これを踏まえると、 flip' の実装
をもっと簡潔にできます。

flip' :: (a -> b -> c) -> b -> a -> c
flip' f y x = f x y

この新しいバージョンの flip' では、関数がカリー化されていることをうま
く使っています。 flip' fを引数 yと xなしで呼び出したら、2つの引数を取
る、引数の入れ替わった fが返るでしょう。

flipされた関数を、また別の関数に渡すこともよくあります。そんな場合で
も、関数が完全に適用されたらどんな結果になるかをよく考えてみたり、その結

oyaji (20170810-501DAE64)

68 第 5章 高階関数

果を書き下してみたりすれば、高階関数を作るときにカリー化がうまく利用でき
るのです。

ghci> zip [1,2,3,4,5] "hello"
[(1,'h'),(2,'e'),(3,'l'),(4,'l'),(5,'o')]
ghci> flip' zip [1,2,3,4,5] "hello"
[('h',1),('e',2),('l',3),('l',4),('o',5)]
ghci> zipWith div [2,2..] [10,8,6,4,2]
[0,0,0,0,1]
ghci> zipWith (flip' div) [2,2..] [10,8,6,4,2]
[5,4,3,2,1]

zip関数を flip'すると、1つ目のリストがペアの 2番目に、2つ目のリスト
がペアの 1番目に格納される、 zipのような関数が得られます。 flip' div関
数は 2 つ目の引数を 1 つ目の引数で割ります。なので flip' div に数 2 と 10

が渡されたら、これは div 10 2の結果と同じになります。

5.3 関数プログラマの道具箱
関数プログラマがたった 1つの値に対する演算をしたいことなんて、あまりあ

りません。たいていは、数や文字や他の型のデータの集まりを受け取り、その集
合を変換して結果を得たいものです。この節では、複数の値を使って仕事をする
ときに便利な関数を見ていくことにします。

map 関数
map関数は、関数とリストを受け取り、その関数をリストのすべての要素に適

用して新しいリストを生成します。これが定義です。

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

型シグネチャによると、mapは aから bへの関数と aのリストを受け取り、b

のリストを返す型を持ちます。
map はいろいろな使い方のできる、とても多才な高階関数です。実例を示し

ます。

ghci> map (+3) [1,5,3,1,6]
[4,8,6,4,9]
ghci> map (++ "!") ["BIFF", "BANG", "POW"]
["BIFF!","BANG!","POW!"]
ghci> map (replicate 3) [3..6]
[[3,3,3],[4,4,4],[5,5,5],[6,6,6]]
ghci> map (map (^2)) [[1,2],[3,4,5,6],[7,8]]
[[1,4],[9,16,25,36],[49,64]]

oyaji (20170810-501DAE64)

5.3 関数プログラマの道具箱 69

ghci> map fst [(1,2),(3,5),(6,3),(2,6),(2,5)]
[1,3,6,2,2]

リスト内包表記を使って同じことができるのに気づいた人もいるでしょう。例
えば、 map (+3) [1,5,3,1,6] は理論的には [x+3 | x <- [1,5,3,1,6]] と
同じです。しかし、 map関数を使うほうが読みやすくなります。 mapの mapと
いったものを扱うようになれば、なおさらです。

filter 関数
filter関数は述語とリストを受け取り、そのリストの要素のうち、述語を満

たすもののみからなるリストを返します（述語とは、何が trueで何が falseかを
言う関数、つまり真理値を返す関数でしたね）。型シグネチャと実装を次に示し
ます。

filter :: (a -> Bool) -> [a] -> [a]
filter _ [] = []
filter p (x:xs)

| p x = x : filter p xs
| otherwise = filter p xs

p xが Trueに評価されたら、その要素は新しいリストに含まれます。 False

に評価された場合には含まれません。
filterの例をいくつか示します。

ghci> filter (>3) [1,5,3,2,1,6,4,3,2,1]
[5,6,4]
ghci> filter (==3) [1,2,3,4,5]
[3]
ghci> filter even [1..10]
[2,4,6,8,10]
ghci> let notNull x = not (null x) ⇨

in filter notNull [[1,2,3],[],[3,4,5],[2,2],[],[],[]]
[[1,2,3],[3,4,5],[2,2]]
ghci> filter (‘elem‘ ['a'..'z']) ⇨

"u LaUgH aT mE BeCaUsE I aM diFfeRent"
"uagameasadifeent"
ghci> filter (‘elem‘ ['A'..'Z']) ⇨

"i LAuGh at you bEcause u R all the same"
"LAGER"

これらもすべて、 map 関数のときのように、リスト内包表記と述語を使って
書けます。どんなときにリスト内包表記ではなく mapと filterを使うべきか、
ルールのようなものは何もありません。コードと文脈に応じて、単純に読みやす
いほうを採用してください。

oyaji (20170810-501DAE64)

70 第 5章 高階関数

リスト内包表記で複数の述語を指定するようなケースを filterで書くときに
は、 filter を何度か適用するか、述語を論理関数 && でつないで指定します。
以下は filterを 2回適用する例です。

ghci> filter (<15) (filter even [1..20])
[2,4,6,8,10,12,14]

この例では、リスト [1..20]を受け取り、偶数だけ残すようにフィルタして
います。その後、そのリストを filter (<15)に渡し、15以上の数を取り除い
ています。リスト内包表記ならこうなります。

ghci> [x | x <- [1..20], x < 15, even x]
[2,4,6,8,10,12,14]

リスト内包表記で要素をリスト [1..20]から引き出し、条件を満たす数のみ
結果のリストに含まれるようにしています。
第 4章で定義した quicksort関数を覚えていますか？ あのときは、ピボット

より小さい（もしくは等しい）要素と大きい要素をフィルタするのにリスト内
包表記を使っていました。 filterを使えば、同じものをもっと読みやすく書け
ます。

quicksort :: (Ord a) => [a] -> [a]
quicksort [] = []
quicksort (x:xs) =

let smallerOrEqual = filter (<= x) xs
larger = filter (> x) xs

in quicksort smallerOrEqual ++ [x] ++ quicksort larger

mapと filter のさらなる例
別の例として、10 万以下の数のうち 3829 で

割り切れる最大の数を探してみましょう。それに
は、解があると分かっている範囲から解になり得
る集合をフィルタするだけです。

largestDivisible :: Integer
largestDivisible = head (filter p [100000,99999..])

where p x = x ‘mod‘ 3829 == 0

はじめに、 100000より小さいすべての数からなる降順のリストを作ります。
それから、それを述語でフィルタします。数のリストは降順にソートされている
ので、条件を満たす最大の数は、フィルタされたリストの先頭の要素として現れ
ます。なので、フィルタされたリストの headを取ります。残りのリストが有限
か無限かはどうでもいい話です。Haskellは怠惰なので最初の条件に合う解が見
つかれば評価は停止します。

oyaji (20170810-501DAE64)

5.3 関数プログラマの道具箱 71

次の例として、10000より小さいすべての奇数の平方数の和を求めてみましょ
う。これには takeWhileという関数を使います。この関数は述語とリストを受
け取り、リストの先頭から始めて述語の条件が満たされる限りリストの要素を
返し続けます。条件に合わない要素が見つかったらリストを返すのをやめます。
例えば、文字列の最初の単語をこんなふうにして取得できます。

ghci> takeWhile (/=' ') "elephants know how to party"
"elephants"

10000より小さいすべての奇数の平方数の和を求めるために、まず、 (^2)関
数を無限リスト [1..]に mapすることから始めます。それから、奇数の要素だ
け残るようにフィルタします。その後で、 takeWhile を使って 10000 より小
さい要素だけからなるリストを作ります。最後に、そのリストの和を求めます
（ sum関数を使います）。すべては GHCiから 1行でできるので、関数を定義す
る必要すらありません。

ghci> sum (takeWhile (<10000) (filter odd (map (^2) [1..])))
166650

すごい！ 初期データ（すべての自然数を含む無限リスト）から始めて、mapし
て、 filterして、必要な分だけ切り出して、最後にそれを足し合わせるだけ！
この例をリスト内包表記で書くと次のようになります。

ghci> sum (takeWhile (<10000) [m | m <- [n^2 | n <- [1..]], odd m])
166650

次はコラッツ列というものを扱う問題です。コラッツの数列は次のように定
義されます。s 任意の自然数から開始するs 数が 1ならば、終了s 数が偶数なら、2で割るs 数が奇数なら、3倍して 1を足すs 新しい値でこのアルゴリズムを繰り返す
この定義に従うと、ある数の列ができます。この列は最初の数が何であ

っても最終的には 1 に到達すると予想されています。例えば 13 から始め
ると、13, 40, 20, 10, 5, 16, 8, 4, 2, 1 という列が得られます（13 × 3 + 1 = 40,
40/2 = 20, . . .）。13から始めたコラッツ列の長さは 10だと分かります。
解きたい問題はこれです。「1から 100までの数のうち、長さ 15以上のコラッ

ツ列の開始数になるものはいくつあるか？」
最初のステップは数列を生成する関数を書くことです。

oyaji (20170810-501DAE64)

72 第 5章 高階関数

chain :: Integer -> [Integer]
chain 1 = [1]
chain n

| even n = n : chain (n ‘div‘ 2)
| odd n = n : chain (n * 3 + 1)

これは標準的な再帰関数の使い方です。すべての列は 1で終わるので、基底部
は 1です。正しく動作するかテストしてみます。

ghci> chain 10
[10,5,16,8,4,2,1]
ghci> chain 1
[1]
ghci> chain 30
[30,15,46,23,70,35,106,53,160,80,40,20,10,5,16,8,4,2,1]

それでは実際に問題に答える関数 numLongChainsを書きましょう。

numLongChains :: Int
numLongChains = length (filter isLong (map chain [1..100]))

where isLong xs = length xs > 15

[1..100]を chain関数で mapし、数列を要素とするリストを得ます。その
数列は、これもまたリストとして表現しています。それから、長さが 15より大
きいか調べる述語を使ってフィルタします。フィルタできたら、その結果のリス
トに数列がいくつあるかを数えます。

NOTE この関数は、純粋に数学的な問題を解く関数なのに、 numLongChains :: Int とい
うワードサイズの枠にとらわれた型を返しています。というのも、 lengthは Intを
返すからです。もし、一般的な Num a 型を返したいなら、 length の結果に対して
fromIntegralを使えばよいでしょう。

map関数に複数の引数を与える
今まで map するのに使っていた関数は、1 引数のみを取る関数だけでした

（ map (*2) [0..]みたいな）。しかし、複数の引数を取る関数で mapすること
も可能です。例えば、 map (*) [0..]のようなことができます。この場合、関
数 *は型 (Num a) => a -> a -> aを持ち、これがリストの各要素に適用され
ます。
すでに見たように、2引数の関数に 1引数だけを与えたら、1引数を取る関数
が返されるのでした。ゆえに、 [0..]を *で mapしたら、1引数関数のリスト
が得られることになります。
例を挙げます。

ghci> let listOfFuns = map (*) [0..]

oyaji (20170810-501DAE64)

5.4 ラムダ式 73

ghci> (listOfFuns !! 4) 5
20

関数のリストの 4 番目の要素を取り出すと、 (4*) と等価な関数が得られま
す。それを 5に適用すると、 (4*) 5、つまり 4 * 5と等しいものになります。

5.4 ラムダ式
ラムダ式とは、1 回だけ必要な関数

を作るときに使う無名関数です。
通常、ラムダ式は高階関数に渡す関

数を作るためだけに使われます。ラム
ダ式を宣言するには、バックスラッシュ
（ \）を書いて †1、それから関数の引数
をスペース区切りで書きます。続けて
->、最後に関数の本体を書きます。 \

は思いっきり目を細めるとギリシャ文
字のラムダ λ に見えますよね。普通、
ラムダ式は括弧で囲みます。
前の節では、 numLongChains の中
で、 filterに渡すだけの関数 isLongを定義するのに where束縛を使っていま
した。これをラムダ式を使って書き換えるとこうなります。

numLongChains :: Int
numLongChains = length (filter (\xs -> length xs > 15)

(map chain [1..100]))

ラムダ式は式なので、このように関数に直接渡す
ことができます。式 (\xs -> length xs > 15)は、
受け取ったリストの長さが 15よりも大きいかどうか
を返す関数を返します。
カリー化と部分適用の動作がよく分かってないと、
必要ないところでラムダ式を使いがちです。例えば
次の式は等価です。

ghci> map (+3) [1,6,3,2]
[4,9,6,5]
ghci> map (\x -> x + 3) [1,6,3,2]
[4,9,6,5]

†1 ［訳注］日本語版Windows環境では\ではなくY=を使います。

oyaji (20170810-501DAE64)

74 第 5章 高階関数

(+3)と (\x -> x + 3)はどちらも引数に 3を足す関数なので、これらは同
じ結果を返します。しかし、この場合はラムダ式を作りたくありません。部分適
用のほうがはるかに可読性が高いからです。
普通の関数と同じように、ラムダ式も任意の数の引数を取ることができます。

ghci> zipWith (\a b -> (a * 30 + 3) / b) [5,4,3,2,1] [1,2,3,4,5]
[153.0,61.5,31.0,15.75,6.6]

普通の関数と同じように、ラムダ式でもパターンマッチができます。唯一異な
るのは、1つの引数に対して複数のパターンを定義できないところです（同じ引
数に対して []と (x:xs)のパターンを作って合致するほうを選択する、といっ
たもの）。

ghci> map (\(a,b) -> a + b) [(1,2),(3,5),(6,3),(2,6),(2,5)]
[3,8,9,8,7]

NOTE もしラムダ式でパターンマッチが失敗したら、ランタイムエラーが発生します。気を
つけて！

もう 1つ興味深い例を見てみましょう。

addThree :: Int -> Int -> Int -> Int
addThree x y z = x + y + z

addThree' :: Int -> Int -> Int -> Int
addThree' = \x -> \y -> \z -> x + y + z

関数はデフォルトでカリー化されているので、これらの 2 つの関数は等価で
す。しかし addThree のほうが圧倒的に読みやすいです。2 つ目の実装は、カ
リー化を説明するための小道具程度にしかなりません。

NOTE 2つ目の例で、ラムダ式が括弧で囲まれていないことに注意してください。ラムダ式
を括弧なしで書いた場合、 -> の右側のすべてがそのラムダ式に属します。なので、
このケースでは括弧を省略してタイプ数を節約しています。もちろん、括弧を付ける
のがお好みなら付けてもかまいません。

とはいえ、カリー化の記法のほうが便利な場合もあります。個人的に flip関
数は次のように定義するのが一番読みやすいと思います。

flip' :: (a -> b -> c) -> b -> a -> c
flip' f = \x y -> f y x

flip' f x y = f y xと書いてもまったく同じことですが、ラムダ式を使う
書き方のほうが、新しい関数を生成するという flipの典型的な使い方をよく表
しています。 flipで一番多い使い方は、引数として関数のみ、もしくは関数と
引数を 1つだけ渡し、生成された関数を mapや zipWithに渡すという方法です。

oyaji (20170810-501DAE64)

5.5 畳み込み、見込みアリ！ 75

ghci> zipWith (flip (++)) ["love you", "love me"] ["i ", "you "]
["i love you","you love me"]
ghci> map (flip subtract 20) [1,2,3,4]
[19,18,17,16]

自分が関数を定義するときもうまくラムダ式を使えば、その関数は部分適用さ
れ引数として別の関数に渡されるものなのだ、という意図を明確にできます。

5.5 畳み込み、見込みアリ！
第 4 章で再帰とたわむれていたころ

に戻りましょう。リストに対する再帰関
数の多くは、ある共通のパターンに従っ
ていました。「基底部は空リストとし、
x:xs パターンを使ってリストを先頭要
素と残りのリストに分解する」というパ
ターンです。このパターンはとても頻繁
に出てくるので、Haskell には畳み込み
（fold）と呼ばれる便利な関数たちが用意
されています。畳み込みを使うと、デー
タ構造（例えばリスト）を単一の値にま
とめることができます。
畳み込みを使えば、リストを 1要素ずつ一回だけ走査してそれに基づいた結果

を返すような関数なら何でも実装できます。リストを走査して何かを返したい
ときはいつでも、畳み込みを使うチャンスなのです。
畳み込み関数は、2 引数関数（2つの引数を取る関数。 +や divなど）と、畳

み込みに用いる値（アキュムレータと呼ばれることが多い）の初期値、それに畳
み込むリストを受け取ります。
リストは右からでも左からでも畳み込めます。畳み込み関数は、アキュムレー

タとリストの先頭（あるいは最後）の要素を引数として、与えられた 2引数関数
を呼び出します。その結果の値が、新しいアキュムレータになります。それから
畳み込み関数は、新しいアキュムレータと新しく先頭（あるいは最後）になった
要素を引数として再び 2引数関数を呼び出し、また新しいアキュムレータを作り
ます。これを、リスト全体を走査しきって単一のアキュムレータの値になるまで
繰り返します。

oyaji (20170810-501DAE64)

76 第 5章 高階関数

foldl で左畳み込み
最初に、 foldl 関数を見てみましょう。 foldl が「2 引数関数」「アキュム

レータ」「畳み込み対象のリスト」の 3つを引数に取ることを、型が教えてくれ
ます。

ghci> :t foldl
foldl :: (a -> b -> a) -> a -> [b] -> a

これはリストを左側から順に畳み込んでいくので、左畳み込み（left fold）と
呼ばれます。左畳み込みでは、最初のアキュムレータとリストの先頭要素に 2引
数関数が適用されます。これが新しいアキュムレータを生成し、リストの次の要
素と一緒に 2引数関数が呼び出され、それが繰り返されます。
では、あからさまな再帰を使わず畳み込みを使って sum 関数を実装し直して

みましょう。

sum' :: (Num a) => [a] -> a
sum' xs = foldl (\acc x -> acc + x) 0 xs

テストしてみます。

ghci> sum' [3,5,2,1]
11

この畳み込みで実際に何が起こっているのか
を詳しく見てみましょう。 \acc x -> acc +

xは 2引数関数です。 0はアキュムレータの初
期値で、xsは畳み込みたいリストです。最初に
0と 3が、2引数関数の引数 accおよび xとし
て渡されます。この場合は、2 引数関数は単な
る足し算なので、この 2つの数は足し合わされ、
3が新しいアキュムレータとして生成されます。
次に、 3と次のリストの値（ 5）が 2引数関数
に渡され、足し合わされ、 8が新しいアキュム
レータになります。同様にして、 8と 2が足し
合わされて 10になり、それから 10と 1が足し
合わされて最終結果の 11 が生成されます。初
めての畳み込み、おめでとう！
左の図は、畳み込みで何が起こるのかを、1ス
テップずつ示したものです。 +の左側がアキュ
ムレータの値です。どのようにしてリストが左
側からアキュムレータによって消費されていく

oyaji (20170810-501DAE64)

5.5 畳み込み、見込みアリ！ 77

のかが分かるでしょう（モグモグ、ムシャムシャ！）。関数がカリー化されてい
ることを踏まえると、この実装はもっと簡潔に書くことができます。

sum' :: (Num a) => [a] -> a
sum' = foldl (+) 0

ラムダ式 (\acc x -> acc + x)は (+)と同じです。 foldl (+) 0はリスト
を取る関数を返すので、引数の xs は省略できます。一般に foo a = bar b a

のような関数があった場合、カリー化のおかげで foo = bar bのように書き換
えることができます。

foldr で右畳み込み
右畳み込み関数 foldrは、リストを右から順に処理する点を除いて†2 左畳み

込みと似ています。また、右畳み込みに使う 2 引数関数では引数の順番が逆に
なっています。1つ目の引数にリストの値、2つ目にアキュムレータを渡します
（これは直感的には、リストを右から畳み込むのでアキュムレータが右に位置す
るイメージです）。2つを比べてみましょう。

ghci> :t foldl
foldl :: (a -> b -> a) -> a -> [b] -> a
ghci> :t foldr
foldr :: (a -> b -> b) -> b -> [a] -> b

畳み込みのアキュムレータの値（もしくは結果の値）は任意の型でかまいませ
ん。数でも真理値でも、はたまた新しいリストでも。例えば、右畳み込みで map

関数を実装してみましょう。アキュムレータはリストです。それに map した要
素を 1 つずつくっつけていくことになります。もちろん最初の要素は空のリス
トです。

map' :: (a -> b) -> [a] -> [b]
map' f xs = foldr (\x acc -> f x : acc) [] xs

[1,2,3]の各要素に (+3)を適用するときには、リストを右から走査します。
最後の要素である 3を取り、それに関数を適用して 6を得ます。それをアキュム
レータである []の先頭に追加します。 6:[]は [6]なので、これが次のアキュ
ムレータになります。次に、 2 に (+3) を適用して 5 が得られ、アキュムレー
タの先頭に追加（ :）します。新しいアキュムレータの値は [5,6]になります。
それから 1に (+3)を適用してアキュムレータの先頭に追加し、最終的な結果と
して [4,5,6]を得ます。

†2 ［訳注］リストは右からは走査できません！ foldrはあくまでリストを左から走査するけれど、結果だ
け見ると右から折り畳んだように見えるということです。この点については、すぐ後で詳しく解説します。

oyaji (20170810-501DAE64)

78 第 5章 高階関数

もちろん、左畳み込みを使って次のように実装することもできなくはありま
せん。

map' :: (a -> b) -> [a] -> [b]
map' f xs = foldl (\acc x -> acc ++ [f x]) [] xs

しかし、 ++関数は :よりもはるかに遅いので、リストから新しいリストを構
築する際には普通は右畳み込みを使います。
右畳み込みと左畳み込みのもう 1つの大きな違いは、右は無限リストに対して
も動作するのに対し、左はダメだということです！
右畳み込みで関数をもう 1つ実装してみましょう。ご存知のとおり、 elem関

数は値がリストに含まれるかどうかを調べる関数です。これを foldrで実装す
るには次のようにします。

elem' :: (Eq a) => a -> [a] -> Bool
elem' y ys = foldr (\x acc -> if x == y then True else acc) False ys

この場合のアキュムレータは真理値で
す（畳み込みにおけるアキュムレータの型
は結果の型と同じでしたね）。最初はリス
トに値がないものと考えるので、初期値は
Falseになります。こうすれば空のリスト
に対しても正しい結果になります。空のリ
ストに対する畳み込みは単に初期値が返る
からです。

次に、現在の値が欲しい値なのか調べます。もしそうなら、アキュムレータを
Trueにセットします。そうでなければ、アキュムレータを変更せずにそのまま
返します。アキュムレータが Falseだったなら、現在の要素は探しているもの
ではないからそのまま Falseにすべきだし、 Trueだったなら、それまで操作し
た部分にあったということなのでそのまま Trueにするべきだからです。

foldl1と foldr1関数
foldl1 と foldr1 関数は、それぞれ foldl と foldr に似ていますが、初期

アキュムレータを明示的に与える必要がありません。その代わり、リストの先頭
（あるいは末尾）の要素を初期アキュムレータとして使い、そこから畳み込みを
始めます。これを使えば maximum関数を次のように実装できます。

maximum' :: (Ord a) => [a] -> a
maximum' = foldl1 max

oyaji (20170810-501DAE64)

5.5 畳み込み、見込みアリ！ 79

maximum を foldl1 を使って実装しました。初期アキュムレータは与えず、
foldl1がリストの最初の要素を初期アキュムレータとみなし、2番目の要素か
ら畳み込まれていきます。そのため、 foldl1に必要なのは 2引数関数と畳み込
むリストだけです！ リストの先頭から始め、各要素をアキュムレータと比較し
ます。要素がアキュムレータより大きければ、それを新しいアキュムレータにし
ます。そうでなければ、古いアキュムレータをそのまま残します。そのために
使っているのが、 foldl1への 2引数関数として渡している maxです。 maxは
2つの値を受け取り大きいほうを返します。リストの畳み込みが終了するときに
は最大値だけが残ります。

foldl1や foldr1で定義した関数は、引数のリストに少なくとも 1つ要素が
含まれていることを前提にしているので、空リストに対して呼び出すとランタイ
ムエラーが発生します。一方、 foldlと foldrで定義した関数は空リストに対
しても正しく動きます。

NOTE 畳み込みを作る際には空リストに対する動作について考えましょう。空リストに対し
ては意味を成さない関数なら、 foldl1や foldr1を使える可能性があります。

いくつかの畳み込みの例
畳み込みがいかにパワフルかを示すために、畳み込みを使って標準ライブラリ

の関数をいくつか実装してみましょう。まずは reverseを書いてみることにし
ます。

reverse' :: [a] -> [a]
reverse' = foldl (\acc x -> x : acc) []

初期アキュムレータを空リストとし、元のリストを左から順にアキュムレータ
の先頭にくっつけていくことによって、リストを逆順にしています。
関数 \acc x -> x : accは、引数が逆になっていることを除けば単なる :関

数です。したがって reverse'を次のように書くこともできます。

reverse' :: [a] -> [a]
reverse' = foldl (flip (:)) []

次は productを実装しましょう。

product' :: (Num a) => [a] -> a
product' = foldl (*) 1

数のリストの積を求めるには、アキュムレータを 1から始め、*関数で左畳み
込みをし、各要素をアキュムレータに掛け合わせていきます。
次は filterです。

oyaji (20170810-501DAE64)

80 第 5章 高階関数

filter' :: (a -> Bool) -> [a] -> [a]
filter' p = foldr (\x acc -> if p x then x : acc else acc) []

初期アキュムレータは空リストです。右から畳み込み、渡された述語 pで各要
素を検査していきます。もし p xが True、つまり現在の要素を結果の要素に残
すべきなら、それをアキュムレータの先頭にくっつけます。そうでなければ古い
アキュムレータをそのまま使い回します。
最後に lastを実装します。

last' :: [a] -> a
last' = foldl1 (_ x -> x)

リストの最後の要素を取得するのに foldl1を使っています。リストの最初の
要素から始めて、常に現在の値を新しいアキュムレータに置き換える 2引数関数
でリストを畳み込みます。最後まで到達したらアキュムレータを返します。こ
れが最後の要素になっているはずです。

別の視点から見た畳み込み
右と左の畳み込みは、リストの要素に対する一連の関数適用と見ることもでき

ます。2引数関数 fと初期アキュムレータ zによる右畳み込みがあるとします。
この右畳み込みは、リスト [3,4,5,6]に対して、本質的には次のようなことを
行います。

f 3 (f 4 (f 5 (f 6 z)))

f はリストの最後の要素とアキュムレータに対して呼び出され、それから最
後から 2 番目の要素とアキュムレータに対して呼び出され、それが繰り返され
ます。

fとして +、初期アキュムレータとして 0が与えられたとすると、これは次
のようになります。

3 + (4 + (5 + (6 + 0)))

+を前置関数として書けばこうになります。

(+) 3 ((+) 4 ((+) 5 ((+) 6 0)))

同様に、2引数関数 gとアキュムレータ zに対する左畳み込みは次のように書
けます。

g (g (g (g z 3) 4) 5) 6

2引数関数として flip (:)、初期アキュムレータとして []アキュムレータ
が与えられたとすると、これはリストの反転であり、次と等価になります。

oyaji (20170810-501DAE64)

5.5 畳み込み、見込みアリ！ 81

flip (:) (flip (:) (flip (:) (flip (:) [] 3) 4) 5) 6

そして実際、これを実行すれば [6,5,4,3]が得られます。

無限リストを畳み込む
畳み込みを一連の関数適用として考えると、foldrが無限リストに対して完璧

に正しく動作する理由が見えてきます。 andを foldrで実装し、前の節のよう
に一連の関数適用として書き下してみましょう。遅延評価の Haskell で foldr

が無限リストに対して動作する仕組みが分かるはずです。
and 関数は、 Bool 値のリストを引数に取り、どれか 1 つが False ならば

Falseを、そうでなければ Trueを返す関数です。リストを右から走査し、True

を初期アキュムレータとします。2引数関数としては、全部が Trueだったとき
に限り Trueが返ってほしいので、 &&を使います。 &&関数は、2つの引数のど
ちらかが Falseだったときに Falseを返すので、 Falseを含むリストを操作す
ればアキュムレータは Falseにセットされ、残りの要素が Trueだったとしても
最終的な結果は Falseになります。

and' :: [Bool] -> Bool
and' xs = foldr (&&) True xs

foldrの動作を知っていれば、 and' [True,False,True]が次のように評価
されると分かります。

True && (False && (True && True))

最後の True は初期アキュムレータで、最初の 3 つの Bool の値はリスト
[True,False,True]から得られるものです。これを評価すれば Falseが得られ
ます。
さて、無限リストではどうなるでしょうか？ repeat Falseは無限個の False

からなる無限リストです。これを書き出してみると次のようになります。

False && (False && (False && (False ...

Haskell は遅延評価なので、本当に必要な部分だけを計算します。そして &&

関数は、両方の引数が Trueだった場合に限って Trueを返すので、最初の引数
が Falseであれば 2つ目の引数を無視します。

(&&) :: Bool -> Bool -> Bool
True && x = x
False && _ = False

この場合だと、 Falseの終わらないリストが 2つ目のパターンに合致します。
そして、Haskell はその無限リストの残りの部分を評価することなく False を

oyaji (20170810-501DAE64)

82 第 5章 高階関数

返すのです。

ghci> and' (repeat False)
False

foldr は、2 番目の引数を常に評価するとは限らないような 2 引数関数が与
えられた場合、無限リストに対してもうまく動作します。例えば &&は、1つ目
の引数が Falseならば 2つ目の引数を無視します。

スキャン
scanlと scanr関数は、 foldlと foldrに似ていますが、アキュムレータの

中間状態すべてをリストとして返します。 scanl1と scanr1関数は foldl1と
foldr1のアナロジーです。関数の実際の使用例を示します。

ghci> scanl (+) 0 [3,5,2,1]
[0,3,8,10,11]
ghci> scanr (+) 0 [3,5,2,1]
[11,8,3,1,0]
ghci> scanl1 (\acc x -> if x > acc then x else acc) [3,4,5,3,7,9,2,1]
[3,4,5,5,7,9,9,9]
ghci> scanl (flip (:)) [] [3,2,1]
[[],[3],[2,3],[1,2,3]]

scanlは結果の最終要素に最終結果が入ります。 scanrはリストの先頭に結
果が入ります。
畳み込みで実装できるような関数の途中経過をモニターしたいときにスキャ
ンが使えます。スキャンを使った例として、次の問題に答えてみましょう。「自
然数の平方根を小さいものから足していったとき、1000を超えるのは何個目？」
すべての自然数の平方数を得るには、単純に map sqrt [1..] とするだけで

す。和を求めるのに畳み込みを使うこともできますが、加算の途中経過が知りた
いのでスキャンを使います。スキャンを使えばどこまでが 1000より小さいか調
べられます。

sqrtSums :: Int
sqrtSums = length (takeWhile (<1000) (scanl1 (+) (map sqrt [1..]))) + 1

ここでは filterではなく takeWhileを使っています。 filterだと 1000以
上の要素を見つけてもリストの走査をやめないからです。ここではリストが昇順
だと分かっているので、 filterではなく takeWhileを使って最初に和が 1000
より大きくなったところで走査を終了できます。
スキャンリストの最初の和は 1です。2番目は 1 + 2の平方根です。3番目は、

それに 3の平方根を足したものです。1000より小さいところに x個の和がある
なら、x + 1要素の和は 1000を超えるでしょう。

oyaji (20170810-501DAE64)

5.6 $を使った関数適用 83

ghci> sqrtSums
131
ghci> sum (map sqrt [1..131])
1005.0942035344083
ghci> sum (map sqrt [1..130])
993.6486803921487

やった！ 正解でした。最初の 130個の平方根を足したものは 1000を下回り、
131個だと超えています。

5.6 $ を使った関数適用
今度は $関数、またの名を関数適用演算子について見ていきましょう。まずは

定義を見てみます。

($) :: (a -> b) -> a -> b
f $ x = f x

何だこりゃ。とんだ役立たずの関数だぞ？ 単なる関
数適用じゃないか！ それでだいたい合っていますが、
それだけではないのです。普通の関数適用（2 つのも
のの間に空白を置く）は非常に高い優先順位を持って
いますが、 $関数は最も低い優先順位を持ちます。ス
ペースを用いた関数適用は左結合（ f a b c は ((f

a) b) cを意味します）ですが、 $による関数適用は
右結合です。

それが何の役に立つのかって？ 括弧の数を少なくしたいとき、たいていはこ
の関数が役立ちます。例えば sum (map sqrt [1..130]) という式を考えてみ
ましょう。 $ は優先順位が低いので、この式を sum $ map sqrt [1..130] と
書き換えることができます。 $が出てきたら、その右側の式が左側の関数に引数
として渡されます。

sqrt 3 + 4 + 9 はどうでしょうか？ これは 3 の平方根と 4 と 9 を足し合
わせます。そうではなく、 3 + 4 + 9 の平方根が欲しい場合は sqrt (3 + 4

+ 9) と書かなければなりません。 $ を使えば sqrt $ 3 + 4 + 9 のように書
けます。 $ は、はるか右に閉じ括弧のある開き括弧だと考えることもできるで
しょう。
もう 1つ例を見てみましょう。

ghci> sum (filter (> 10) (map (*2) [2..10]))
80

oyaji (20170810-501DAE64)

84 第 5章 高階関数

ホヮー、括弧がいっぱいだ！ ひどい！ この式は [2..10]の各要素に (*2)を
適用し、その結果を 10 よりも大きいもののみを保持するようにフィルタして、
最後に足し合わせています。
これをもう少し目に優しく書き換えるのに $関数を使えます。

ghci> sum $ filter (> 10) (map (*2) [2..10])
80

$ 関数は右結合なので、 f $ g $ x は f $ (g $ x) と同じことです。これ
を踏まえて、さらに次のように書き換えることができます。

ghci> sum $ filter (> 10) $ map (*2) [2..10]
80

括弧を削除する話とは別に、$は関数適用それ自身を関数として扱えるように
するために使えます。これにより、例えば関数適用をリストに対して map する
ようなことができます。

ghci> map ($ 3) [(4+), (10*), (^2), sqrt]
[7.0,30.0,9.0,1.7320508075688772]

この例は、関数 ($ 3)がリストに対して mapされます。 ($ 3)という関数は、
関数を引数に取って、その関数を 3に適用する関数だと考えられます。したがっ
て、リスト中のすべての関数が 3に適用され、上のような結果が得られます。

5.7 関数合成
数学における関数合成は (f ◦ g)(x) = f(g(x)) のように定義されます。これ

は、2つの関数を合成したものは、まず 1つの関数を呼び出し、それからもう 1
つの関数にその結果を渡して呼び出したものに等しい、という意味です。

Haskellの関数合成もこれとほとんど同じです。次のように定義される「 .」
関数を使って関数合成ができます。

(.) :: (b -> c) -> (a -> b) -> a -> c
f . g = \x -> f (g x)

型宣言に注意してください。 f は引数と
して、gの返り値の型と同じ型の値を受け取
らなければなりません。なので、合成された
関数は、gが受け取る型と同じ型の引数を受
け取り、fが出力する型と同じ型の結果を返
します。例えば式 negate . (*3)は、数を
受け取り、それを 3倍して、それから符号反
転する関数を返します。

oyaji (20170810-501DAE64)

5.7 関数合成 85

関数合成の用途としては、他の関数に渡す関数をその場で作るというものがあ
ります。もちろんラムダ式を使ってもいいですが、たいていは関数合成のほうが
明快で簡潔です。
例えば、数のリストがあって、その全部を負の数にしたいとします。各要素の

絶対値を取ってから符号反転するという方法が考えられます。

ghci> map (\x -> negate (abs x)) [5,-3,-6,7,-3,2,-19,24]
[-5,-3,-6,-7,-3,-2,-19,-24]

ラムダ式が関数合成の結果のように見えませんか。関数合成を使えばこう書
き換えることができます。

ghci> map (negate . abs) [5,-3,-6,7,-3,2,-19,24]
[-5,-3,-6,-7,-3,-2,-19,-24]

素晴らしい！ 関数合成は右結合なので、一度にたくさんの関数を合成できま
す。式 f (g (z x)) は (f . g . z) x と等価です。これを踏まえて、次の汚
いコードを何とかしてみましょう。

ghci> map (\xs -> negate (sum (tail xs))) [[1..5],[3..6],[1..7]]
[-14,-15,-27]

次のようにとってもきれいに書き直せます。

ghci> map (negate . sum . tail) [[1..5],[3..6],[1..7]]
[-14,-15,-27]

negate . sum . tailは、リストを受け取り、それに tailを適用し、それ
からその結果に sumを適用し、最後にその結果に negateを適用する関数です。
なので、これは前の例のラムダ式と等価です。

多引数関数の関数合成
複数の引数を取る関数を合成するときはどうすればいいでしょう？ 普通は、

残り 1 引数になるまで部分適用しないと関数合成できません。次の式で考えて
みましょう。

sum (replicate 5 (max 6.7 8.9))

この式は次のように書き換えられます。

(sum . replicate 5) (max 6.7 8.9)

このように書いても同じです。

sum . replicate 5 $ max 6.7 8.9

oyaji (20170810-501DAE64)

86 第 5章 高階関数

関数 replicate 5 が max 6.7 8.9 の結果に適用され、それからその結果に
sumが適用されます。 replicate関数を部分適用して 1つだけ引数を取るよう
にしている点に注目してください。 max 6.7 8.9 の結果が replicate 5 に渡
され、数のリストが結果の値となり、さらにそれが sumに渡されます。
たくさん括弧がある式を関数合成を使って書き直したいなら、まずは一番内側

の関数とその引数を書き出すことから始めましょう。それから $ をその前に置
いて、その前に置かれていた関数から最後の引数を取り除き、間にドットを置い
て合成します。次の式は、

replicate 2 (product (map (*3) (zipWith max [1,2] [4,5])))

次のように書き直せます。

replicate 2 . product . map (*3) $ zipWith max [1,2] [4,5]

どうやって最初の例を書き換えたのでしょうか？ まず、閉じ括弧の集まりの
直前を見て、右端にある関数とその引数を見つけます。この例では zipWith

max [1,2] [4,5]です。これを取り出して書きつけておきます。

zipWith max [1,2] [4,5]

それから、 zipWith max [1,2] [4,5] にどの関数が適用されているかを調
べます。それは map (*3)だと分かります。そこで、これとさっき書いた式の間
に $ を書きます。

map (*3) $ zipWith max [1,2] [4,5]

では、合成を開始します。どの関数が適用されるか調べます。すると product

が適用されているので、 map (*3)とこれを合成します。

product . map (*3) $ zipWith max [1,2] [4,5]

それから最後に replicate 2が適用されているので、次のように書き換える
ことができます。

replicate 2 . product . map (*3) $ zipWith max [1,2] [4,5]

式の終わりに 3つも括弧があったなら、今示したような手順で関数合成を使っ
て書き直すチャンスです。関数合成演算子を 2つ使って書き直せるでしょう。

oyaji (20170810-501DAE64)

5.7 関数合成 87

ポイントフリースタイル
関数合成のもう 1 つの一般的な使い道は、ポイントフリースタイル†3 で関数

を定義するというものです。例えばこのような関数を書いたとしましょう。

sum' :: (Num a) => [a] -> a
sum' xs = foldl (+) 0 xs

イコールの両側とも右端が xsです。関数はカリー化されているので、この両
側の xs は省略できます。 foldl (+) 0 を呼び出すとリストを受け取る関数が
作り出されるからです。このようにして関数をポイントフリースタイルで書く
ことができます。

sum' :: (Num a) => [a] -> a
sum' = foldl (+) 0

もう 1つの例として、次の関数をポイントフリースタイルで書いてみましょう。

fn x = ceiling (negate (tan (cos (max 50 x))))

両方の右端に x がありますが、括弧で囲まれているので取り除けません。
cos (max 50)としてしまっては、関数のコサインを取るという、意味を成さな
いコードになってしまいます。ここでできるのは fnを関数合成で表現すること
です。

fn = ceiling . negate . tan . cos . max 50

素ん晴らしい！ ポイントフリースタイルにすると読みやすく簡潔になることが
多々あります。データよりも関数に目がいくようになり、どのようにデータが移
り変わっていくかではなく、どんな関数を合成して何になっているかを考えやす
くなるからです。単純な関数から始め、関数合成を糊として使うことにより、よ
り複雑な関数を作り出せばよいのです。
とはいえ関数が複雑になりすぎると、ポイントフリースタイルでは可読性が悪
くなることもあります。このため、関数合成のチェインはあまり長くしないよう
にしましょう。 let を使って途中の結果にラベルを与え、問題を小さな問題に
分解すれば、読む人にとって分かりやすいコードになります。
この章の前半で、奇数の平方数で 10000 より小さいものの総和を求める問題
を解きました。これを関数にすると次のようになります。

oddSquareSum :: Integer
oddSquareSum = sum (takeWhile (<10000) (filter odd (map (^2) [1..])))

関数合成の知識を使うと次のようにも書けます。

†3 ［訳注］ポイントとは、 fn x = f (g x)のような関数定義に登場する一時変数 xのことです。このポ
イントを使わないで関数を定義するスタイルなので、ポイントフリースタイルというわけです。

oyaji (20170810-501DAE64)

88 第 5章 高階関数

oddSquareSum :: Integer
oddSquareSum = sum . takeWhile (<10000) . filter odd $ map (^2) [1..]

はじめのうちは少し風変わりなスタイルに見えるかもしれませんが、すぐに慣
れていくことでしょう。こちらの書き方には括弧が少ないので視覚的ノイズも
少なくなっています。このコードを見て「 filter odd が map (^2) [1..] に
適用され、それから takeWhile (<10000)がその結果に適用され、最後にその
結果に sumが適用される」と読めるようになります。

oyaji (20170810-501DAE64)

第6章
モジュール

Haskell のモジュールは、いくつ
かの関数や型、型クラスなどを定義
したファイルです。Haskell のプロ
グラムはモジュールの集合です†1。
モジュールには複数の関数と型を

定義でき、そのうちのいくつか、も
しくはすべてをエクスポートできま
す。エクスポートとは、モジュール
の中のものを外の世界からも見える
ように、使えるようにすることです。
コードを複数のモジュールに分割することにはたくさんの利点があります。十

分に汎用のモジュールなら、エクスポートする関数を多くの異なるプログラム
で使えます。自分のコードを相互に強く依存しない（疎結合ともいいます）モ
ジュールに分割しておけば、後でモジュールごとに再利用できます。コードを複
数の部分に分割すれば、それだけ管理もしやすくなります。

Haskellの標準ライブラリは複数のモジュールに分割されていて、それぞれの
モジュールに含まれる関数と型には何らかの関係があり、共通の目的で結び付い
ています。リストを操作するためのモジュール、並行プログラミングのためのモ
ジュール、複素数を扱うためのモジュールなどがあります。これまでの章で使っ
てきたすべての関数、型、型クラスはデフォルトでインポートされる Prelude

というモジュールの一部です。

†1［訳注］Haskellには便利なモジュールがいっぱいあります！Hackage（hackage.haskell.org/packages）
は Haskellのパッケージの巨大な動物園です。viiiページどおりに Haskell Platformをインストールして
あるなら、cabalコマンドが使えるはず。「 cabal install パッケージ名」というコマンド一発で、さ
まざまなパッケージをインストールできますよ！

89

hackage.haskell.org/packages

oyaji (20170810-501DAE64)

90 第 6章 モジュール

この章では便利なモジュールとその関数をいくつか見ていきます。でも、その
前にモジュールをインポートする方法を覚えないと始まりません。

6.1 モジュールをインポートする
Haskell のソースコードからモジュールをインポートする構文は import

ModuleNameです。インポート構文はすべての関数定義よりも前に書く必要があ
ります。そのため、インポート文は普通ファイルの先頭にあります。複数のモ
ジュールをインポートしたい場合は、 import 文を 1 行に 1 つずつ書いてくだ
さい。
便利なモジュールの例として Data.Listを紹介しましょう。このモジュール

はリストに対する関数をエクスポートしています。このモジュールの関数を使っ
て、リストに一意な要素がいくつあるか数える関数を作ってみましょう。

import Data.List

numUniques :: (Eq a) => [a] -> Int
numUniques = length . nub

Data.List をインポートすると、 Data.List がエクスポートするすべて
の関数が使えるようになり、スクリプトのどの場所からでも呼べるようにな
ります。 nub は Data.List がエクスポートする関数の 1 つで、リストから
重複する要素を取り除く関数です。（ここで、さっき学んだポイントフリース
タイルが登場しています！ length . nub は length と nub の関数合成で、
\xs -> length (nub xs)と等価な関数であることを思い出してください。）

NOTE 探している関数がどこにあるのか知りたいときは、Hoogle（http://www.haskell.

org/hoogle/）を使うとよいでしょう。関数名、モジュール名、はては型シグネチャ
からも検索できる、とても素晴らしい Haskell検索エンジンです。

モジュールで定義された関数は、GHCi からも使えます。GHCi の中から
Data.List がエクスポートしている関数を呼びたいなら、次のようにタイプし
ます†2。

ghci> :m + Data.List

†2 ［訳注］現在の GHCでは、GHCi上で import文を利用することもできます。この import文は、スクリ
プト中で利用する場合とまったく同じように使うことができます。
Prelude> import Data.List (nub, sort)
Prelude Data.List> import qualified Data.Map as M hiding (foldl)
Prelude Data.List M>

http://www.haskell.org/hoogle/
http://www.haskell.org/hoogle/

oyaji (20170810-501DAE64)

6.1 モジュールをインポートする 91

GHCiから複数のモジュールにアクセスしたい場合、 :m + を何回もタイプ
する必要はありません。複数のモジュールを一度にロードしたいなら次のよう
にします。

ghci> :m + Data.List Data.Map Data.Set

なお、モジュールをインポートするスクリプトをロードしている場合には、そ
のモジュールにアクセスするために :m +を使う必要はありません。モジュール
中の特定の関数のみが必要な場合には、その関数のみを選んでインポートできま
す。例えば、 Data.Listから nubと sortのみをインポートしたいなら、次の
ようにします。

import Data.List (nub, sort)

読み込みたくない関数を指定し、それ以外を全部インポートすることもできま
す。これは、複数のモジュールが同じ名前の関数をエクスポートしていて、不要
なほうを取り除きたいときなどに使います。例えば、すでに nub という名前の
関数が存在するので、 Data.Listから nubを除くすべての関数をインポートし
たい場合は、次のようにします。

import Data.List hiding (nub)

名前の競合を避けるもう 1つの方法は、修飾付きインポート（qualifiedイン
ポート）です。 Data.Map モジュールを例に見てみましょう。このモジュール
は、キーに対応する値を検索するためのデータ構造を提供します。 filter や
null のような、 Prelude にある関数と同じ名前の関数をたくさんエクスポー
トしています。なので、 Data.Map をインポートして filter を呼び出すと、
Haskellはどちらの関数を使えばいいか分からなくなってしまいます。これを解
決するには次のように修飾付きインポートします。

import qualified Data.Map

この状態で Data.Map の filter 関数を参照したいなら、 Data.Map.filter

を使わなければなりません。単に filter とタイプすると、これはお馴染みの
filter関数のことを指します。でも、 Data.Mapをすべての関数の前に付ける
のはうんざりです。そこで、修飾付きインポートしたモジュールには何かしら短
い別名をつけられるようになっています。

import qualified Data.Map as M

これで、 Data.Mapの filter関数を参照するには単に M.filterとタイプす
るだけで済むようになりました。

oyaji (20170810-501DAE64)

92 第 6章 モジュール

これまで見てきたとおり、修飾付きインポートしたモジュールの関数を参照す
るには、M.filterのように「 .」が使われます。しかし、「 .」は関数合成演算
子としても使います。Haskellはどうやってこれを区別しているのでしょうか？
「 .」が qualifiedされたモジュール名と関数名の間に空白を開けずに置かれた
場合には、インポートされた関数であるとみなされます。そうでなければ関数合
成として扱われます†3。

NOTE Haskellについて新しい知識を仕入れる最良の方法は、標準ライブラリのドキュメン
トにアクセスし、そのモジュールと関数を散策することです。各モジュールのソース
コードを見ることもできます。モジュールのソースコードをいくつか読めば、Haskell
に対する確かな感覚が身に付くでしょう。

6.2 標準モジュールの関数で問題を解く
標準ライブラリのモジュールには、Haskell でのコーディングライフを豊か

にしてくれるたくさんの関数が用意されています。さまざまな Haskell のモ
ジュールの関数を使っていかにして問題を解くか、実例を見ていくことにしま
しょう。

単語を数える
単語がたくさん含まれた文字列があって、各単語が何回現れるかを求めたいと

します。最初に使うのは、 Data.List モジュールに含まれる words 関数です。
words 関数は、文字列を空白で区切られた文字列（単語）のリストに変換しま
す。実行例を示します。

ghci> words "hey these are the words in this sentence"
["hey","these","are","the","words","in","this","sentence"]
ghci> words "hey these are the words in this sentence"
["hey","these","are","the","words","in","this","sentence"]

それから、これも Data.List モジュールに含まれる group 関数を使います。
これは同じ単語をグループ化するのに使います。この関数はリストを引数に取
り、隣接する要素が同じものをまとめます。

ghci> group [1,1,1,1,2,2,2,2,3,3,2,2,2,5,6,7]
[[1,1,1,1],[2,2,2,2],[3,3],[2,2,2],[5],[6],[7]]

では、同じ要素が隣接していない場合はどうなるでしょうか？

†3 ［訳注］モジュール名は大文字で始まり、関数名は小文字で始まることに注意。

oyaji (20170810-501DAE64)

6.2 標準モジュールの関数で問題を解く 93

ghci> group ["boom","bip","bip","boom","boom"]
[["boom"],["bip","bip"],["boom","boom"]]

同じリストに含まれているのに、 "boom"を含むリストが 2つ得られました。
どうすればいいのでしょうか？ 単語のリストをあらかじめソートしておきま
しょう！ そのためには sort関数を使います。これは Data.Listに含まれてい
て、順序付けされた要素からなるリストを受け取り、昇順に並び替えた新しいリ
ストを返します。

ghci> sort [5,4,3,7,2,1]
[1,2,3,4,5,7]
ghci> sort ["boom","bip","bip","boom","boom"]
["bip","bip","boom","boom","boom"]

文字列がアルファベット順にソートされていることに気づいたでしょうか。
レシピの材料はすべて揃いました。あとは書き出すだけです。文字列を受け
取り、それを単語のリストに分割し、それらの単語をソートし、それからグルー
ピングします。最後に、 "boom" の 3 回の出現を ("boom", 3) に置き換える、
魔法のようなマッピングを使います。

import Data.List

wordNums :: String -> [(String,Int)]
wordNums = map (\ws -> (head ws, length ws)) . group . sort . words

最終的な関数を作るのに関数合成を利用しました。 "wa wa wee wa"のような
文字列を受け取ると、wordsが適用され、結果として ["wa","wa","wee","wa"]

が得られます。次に、 sort が適用され、 ["wa","wa","wa","wee"] が得ら
れます。これに group が適用されて、同じ隣接要素がグループ化されると、
[["wa","wa","wa"],["wee"]]が得られます。それからこのリストに対し、リ
ストを受け取ってタプル（1つ目の要素はリストの headで、2つ目の要素はそ
の長さ）を返す関数をマップします。最終的な結果は [("wa",3),("wee",1)]

になります。
これを関数合成なしで書くとこうなります。

wordNums xs = map (\ws -> (head ws,length ws)) (group (sort (words xs)))

うわあ括弧だらけ！ この関数が関数合成で読みやすくなってることがよく分
かります。

干し草の山から針を探す
次のミッションは、2 つのリストを受け取り、1 つ目のリストが 2 つ目のリ

ストのどこかに含まれているかを調べる関数を作ることです。例えば、リスト

oyaji (20170810-501DAE64)

94 第 6章 モジュール

[3,4]は [1,2,3,4,5]に含まれています。一方、 [2,5]は含まれていません。
検索対象のリストを haystack（干し草の山）、検索したいリストを needle（針）
と呼ぶことにします。
この難題を解くために、またもや Data.Listの住人である tails関数を使い

ます。 tailsはリストを受け取り、そのリストに対して tail関数を繰り返し適
用します。例を示します。

ghci> tails "party"
["party","arty","rty","ty","y",""]
ghci> tails [1,2,3]
[[1,2,3],[2,3],[3],[]]

これだけでは tails が必要な理由がピンとこないかもしれません。そのうち
分かります。
まず、文字列 "party"から文字列 "art"を探してみましょう。最初に、tails

関数を使ってリストの tail をすべて取得します。それから各 tail を調べて、そ
のうちのどれかが "art" で始まっていれば、干し草の山（haystack）から針
（needle）を探し当てたということです！ "party"の中で "boo"を探していて
も、 "boo"から始まる tailは見つからないでしょう。
ある文字列が別の文字列から始まっているかどうかを調べるために、やはり

Data.List に含まれている isPrefixOf 関数を使います。これは 2 つのリスト
を引数に取り、2つ目のリストが 1つ目のリストで始まっているかどうかを教え
てくれます。

ghci> "hawaii" ‘isPrefixOf‘ "hawaii joe"
True
ghci> "haha" ‘isPrefixOf‘ "ha"
False
ghci> "ha" ‘isPrefixOf‘ "ha"
True

あとは haystackの tailに needleから始まるものがあるか調べるだけです。
これには Data.Listにある any関数が使えます。述語とリストを受け取り、要
素のどれかが述語を満たすかどうかを返す関数です。ご覧のとおり！

ghci> any (> 4) [1,2,3]
False
ghci> any (=='F') "Frank Sobotka"
True
ghci> any (\x -> x > 5 && x < 10) [1,4,11]
False

これらの関数を組み合わせましょう。

oyaji (20170810-501DAE64)

6.2 標準モジュールの関数で問題を解く 95

import Data.List

isIn :: (Eq a) => [a] -> [a] -> Bool
needle ‘isIn‘ haystack = any (needle ‘isPrefixOf‘) (tails haystack)

これでおしまい！ tailsを使って haystackの tailのリストを生成し、その
中に needleから始まるものがあるかを調べればよいのです。この関数をテスト
してみましょう。

ghci> "art" ‘isIn‘ "party"
True
ghci> [1,2] ‘isIn‘ [1,3,5]
False

あ、ちょっと待った！ 今作った関数はすでに Data.List にあるんだった！
ちくしょう！ それは isInfixOfという名前で、我々の isIn関数と同じ動作を
します。

シーザー暗号サラダ
ガイウス・ジュリアス・シーザー君が我々に重要な仕事を依頼してきました。

ガリアにいるマルクス・アントニウス君に最高機密のメッセージを届けよとのこ
と。仕事を確実に完遂するために、 Data.Charの関数をいくつか使って、シー
ザー暗号でメッセージを暗号化し、他人には読めないようにしましょう。
シーザー暗号は文字列を暗号化する原始的な方

法で、それは各文字をアルファベット上で一定の
数だけシフトするというものです。シーザー暗号
みたいなものは簡単に作れます。それもアルファ
ベットに限らず Unicode 文字全体に対するもの
が作れます。
文字を前方向および後ろ方向にシフトするため

に、 Data.Char モジュールにある文字を対応す
る数に変換する ord関数と、その逆を行う chr関
数を使います。

ghci> ord 'a'
97
ghci> chr 97
'a'
ghci> map ord "abcdefgh"
[97,98,99,100,101,102,103,104]

'a'は Unicodeテーブル上の 97番目に位置するので、 ord 'a'は 97を返
します。

oyaji (20170810-501DAE64)

96 第 6章 モジュール

2 つの文字の ord の値の差は、Unicode テーブル上で文字が何文字離れてい
るかと同じです。
文字をシフトする数と文字列を受け取り、文字列中の各文字をアルファベット
上で指定された数だけ前方向にシフトする関数を書いてみましょう。

import Data.Char

encode :: Int -> String -> String
encode offset msg = map (\c -> chr $ ord c + offset) msg

文字列を暗号化するのは、「文字を受け取って対応する数に変換してからオフ
セットを足して文字に戻す関数」を文字列にマップするという簡単なお仕事で
す。関数合成野郎ならこの関数を (chr . (+ offset) . ord)のように書くで
しょう。

ghci> encode 3 "hey mark"
"kh|#pdun"
ghci> encode 5 "please instruct your men"
"uqjfxj%nsxywzhy%~tzw%rjs"
ghci> encode 1 "to party hard"
"up!qbsuz!ibse"

間違いなく暗号化されました！
メッセージの復号は、基本的には元の文字をシフトした数だけ単純に逆にシフ
トすればいいでしょう。

decode :: Int -> String -> String
decode shift msg = encode (negate shift) msg

シーザー君のメッセージを復号してみましょう。

ghci> decode 3 "kh|#pdun"
"hey mark"
ghci> decode 5 "uqjfxj%nsxywzhy%~tzw%rjs"
"please instruct your men"
ghci> decode 1 "up!qbsuz!ibse"
"to party hard"

正格な左畳み込みにて
前の章で foldl がどのように動作するのか、それを使ってどうやってイケて
る関数の数々を実装するのかを見てきました。しかし、 foldlにはまだよく調
べていない問題があります。 foldlはコンピュータのメモリの特定の領域を使
いすぎたときに起こる、スタックオーバーフローエラーを引き起こすことがある
のです。これを示すために、 foldlと +関数を使って 100個の 1からなるリス
トを合計してみましょう。

oyaji (20170810-501DAE64)

6.2 標準モジュールの関数で問題を解く 97

ghci> foldl (+) 0 (replicate 100 1)
100

大丈夫そうです。では、ドクター・イーブルが 100 万個の 1を突っ込んだリス
トの総和を foldlで求めようとしたらどうなるでしょう？

ghci> foldl (+) 0 (replicate 1000000 1)
*** Exception: stack overflow

ぐぬぬ。まさに外道！ どうしてこうなったの
でしょう？ Haskellは遅延評価で、だから実際の
値の計算は可能な限り後まで引き伸ばされます。
foldlを使うとき、Haskellは各ステップにおけ
るアキュムレータの計算（すなわち評価）を実際
には行いません。その代わり、評価を先延ばしに
します。その次のステップでもアキュムレータを
評価することはなく、評価を先延ばしにします。このとき、新しい計算で前の計
算結果を参照するかもしれないので、以前に先延ばしにしていた計算もメモリ上
に保持し続けます。こうして畳み込みでは、それぞれバカにならない量のメモ
リを消費する先延ばしにした計算が積み上がっていきます。そしてついにはス
タックオーバーフローエラーを引き起こしてしまうのです†4。

Haskell がどのように式 foldl (+) 0 [1,2,3] を評価するのかを見てみ
ます。

foldl (+) 0 [1,2,3] =
foldl (+) (0 + 1) [2,3] =
foldl (+) ((0 + 1) + 2) [3] =
foldl (+) (((0 + 1) + 2) + 3) [] =
((0 + 1) + 2) + 3 =
(1 + 2) + 3 =
3 + 3 =
6

見てのとおり、先延ばしにした計算による大きなスタックがまず構築され、空
リストに到達したところで、先延ばしにしていたそれらの計算が実際に開始され
ます。これは小さなリストでは問題になりませんが、100万の要素を含むような
大きなリストでは、先延ばしにしていた計算がすべて再帰的に行われるので、ス
タックオーバーフローという結果になってしまいます。計算を先延ばしにしな
い、こんな関数 foldl'があればいいのですが。

†4 ［訳注］エラーメッセージは OSや GHCのバージョンによって異なります。また、致命的な結果を引き
起こすために必要なリストのサイズも 100万よりもずっと大きい場合があります。ドクター・イーブルの
挑戦を受けてたつ勇気のある方は、各自のマシンで試してみてください。

oyaji (20170810-501DAE64)

98 第 6章 モジュール

foldl' (+) 0 [1,2,3] =
foldl' (+) 1 [2,3] =
foldl' (+) 3 [3] =
foldl' (+) 6 [] =
6

左折り畳みの各ステップ間で計算が遅延されず、すぐに評価される foldlと
いうわけです。ここでうれしいお知らせがあります。このような foldlの正格
バージョンの関数、まさしく foldl' という名前の関数が Data.Listにありま
す。さっそくその foldl'を使って 100万個の 1の総和を計算してみましょう。

ghci> foldl' (+) 0 (replicate 1000000 1)
1000000

大成功です！ もし foldlを使ってスタックオーバーフローエラーになった場
合には、 foldl'に切り替えてみてください。 foldl1に対しても、やはり正格
なバージョンの foldl1'という関数があります。

かっこいい数を見つけよう
あなたが通りを歩いていると、老婦人が近づいてきて言いました。「すみませ

ん。各桁の数の合計が 40になる最初の自然数は何でしょうか？」
さて、あなたならどうする？ その数を見つける
のに Haskellの魔法を使いましょう。例えば、123
の各桁を合計すると 1 + 2 + 3 = 6から 6が得られ
ます。じゃあ、各桁の数を足し合わせて 40になる
数は何でしょうか？
はじめに、数を引数として受け取り、各桁の合計
を求める関数を作りましょう。ここでちょっとかっ
こいい技を使います。まず、 showを使って数を文
字列に変換します。文字列が得られたなら、それぞ
れの文字を数に変換して、その数のリストを合計し

ます。文字を数に変換するには Data.Charモジュールの digitToIntというお
手軽な関数を使います。これは、 Charを受け取り Intを返します。

ghci> digitToInt '2'
2
ghci> digitToInt 'F'
15
ghci> digitToInt 'z'
*** Exception: Char.digitToInt: not a digit 'z'

digitToIntは、 '0'から '9'および 'A'から 'F'（小文字でもよい）の文
字に対して動作します。

oyaji (20170810-501DAE64)

6.2 標準モジュールの関数で問題を解く 99

数を引数に取って、その各桁の数の合計を返す関数は、次のように書けます。

import Data.Char
import Data.List

digitSum :: Int -> Int
digitSum = sum . map digitToInt . show

文字列に変換し、その文字列に対して digitToIntをマップして、その結果の
数のリストを合計します。
さて、 digitSumを適用した結果が 40になる最初の数を探さないといけませ
ん。それには Data.List にある find 関数を使います。これは述語関数とリス
トを引数に取り、リストの中で条件に合致する最初の要素を返します。この関数
は型がちょっと変わっています。

ghci> :t find
find :: (a -> Bool) -> [a] -> Maybe a

最初の引数は述語で、2つ目の引数はリストで
すが、これらはどうってことないですね。でも返
り値は何でしょうか？ Maybe aと言っています。
見たことのない型です。 Maybe a型の値は、リス
ト型 [a]に似ています。リストが 0個、1個、あ
るいはもっとたくさんの要素を持てるのに対し、
Maybe a型の値は、0個かちょうど 1個の要素だ
けを持てます。この型は、失敗する可能性がある
ことを表現するのに使います。何も持っていないという値を作るには Nothing

を使います。これは空リストに似ています。何かを、例えば "hey" を保持して
いる値を作るときは、 Just "hey"と書きます。ちょっと実演してみましょう。

ghci> Nothing
Nothing
ghci> Just "hey"
Just "hey"
ghci> Just 3
Just 3
ghci> :t Just "hey"
Just "hey" :: Maybe [Char]
ghci> :t Just True
Just True :: Maybe Bool

ご覧のとおり、 Just Trueの型は Maybe Boolです。これは、真理値を保持
するリストの型が [Bool]であるようなものです。
もし findで述語を満たす要素が見つかったら、その要素を Justでラップし

たものが返されます。見つからなければ Nothingが返されます。

oyaji (20170810-501DAE64)

100 第 6章 モジュール

ghci> find (> 4) [3,4,5,6,7]
Just 5
ghci> find odd [2,4,6,8,9]
Just 9
ghci> find (=='z') "mjolnir"
Nothing

では、目的の関数の実装に戻りましょう。すでに digitSum関数を実装してい
るし、 findがどのように動作するか知っているので、あとは両者を組み合わせ
るだけです。見つけたいものは、各桁の合計が 40になる最初の数だということ
を思い出してください。

firstTo40 :: Maybe Int
firstTo40 = find (\x -> digitSum x == 40) [1..]

無限リスト [1..]を受け取り、 digitSumが 40になる最初の数を探します。

ghci> firstTo40
Just 49999

答が見つかりました！ 合計値の希望が 40に固定されていない、引数として与
えられるもっと一般的な関数が欲しければ、次のように変更できます。

firstTo :: Int -> Maybe Int
firstTo n = find (\x -> digitSum x == n) [1..]

さっと試してみましょう。

ghci> firstTo 27
Just 999
ghci> firstTo 1
Just 1
ghci> firstTo 13
Just 49

6.3 キーから値へのマッピング
集合のようなデータを扱うときは、その順序を気にしたくない場合もありま

す。単にキーでアクセスしたい場合などです。例えば、ある住所に誰が住んでい
るか知りたいときは、住所で名前を検索したいものです。この節では、望みの値
（誰かの名前）を何らかのキー（その人の住所）で検索する話をします。

だいたい大丈夫（連想リスト）
キー／値を対応付ける方法はいくつかあります。そのうちの 1 つは連想リス

トです。連想リスト（またの名を辞書）は、キーと値のペアを順序を気にせずリ
ストにしたものです。例えば電話番号を格納する連想リストなら、電話番号が値

oyaji (20170810-501DAE64)

6.3 キーから値へのマッピング 101

で、人の名前がキーになるでしょう。格納されている順番は気にしません。正し
い人名に対して正しい電話番号が得られればそれでいいのです。

Haskell で連想リストを表現する一番あからさまな方法は、ペアのリストで
しょう。ペアの 1つ目の要素をキーに、2つ目の要素を値にします。電話番号の
例ならこんな連想リストです。

phoneBook =
[("betty", "555-2938")
,("bonnie", "452-2928")
,("patsy", "493-2928")
,("lucille", "205-2928")
,("wendy", "939-8282")
,("penny", "853-2492")
]

インデントが変に見えるかもしれませんが、単なる文字列のペアのリスト
です。
連想リストに対する一番よくある操作は、キーによる値の検索です。与えられ
たキーに対して値を検索する関数を作ってみましょう。

findKey :: (Eq k) => k -> [(k, v)] -> v
findKey key xs = snd . head . filter (\(k, v) -> key == k) $ xs

実にシンプルです。この関数はキーとリストを受け取り、キーに合致するもの
のみをフィルタで残して、最初のキー／値のペアを取り出し、値を返します。
でも、連想リストに探しているキーがなかったら何が起こるんでしょうか？
うむむ。この場合、キーが連想リストになければ、空リストの headを取ろうと
してランタイムエラーが投げられるでしょう。そんなに簡単にクラッシュして
しまうプログラムを書くべきではありません。そこで Maybe型を使うことにし
ましょう。キーが見つからなかったときは Nothingを返します。見つかったと
きは「 Just 何か」（「何か」はキーに対応する値）を返します。

findKey :: (Eq k) => k -> [(k, v)] -> Maybe v
findKey key [] = Nothing
findKey key ((k,v):xs)

| key == k = Just v
| otherwise = findKey key xs

型宣言を見てください。等値比較のできるキーと連想リストを引数に取り、う
まくいけば値を返します。だいたいそんな感じです。
これはリストに対する再帰関数の教科書的な例です。基底部と、リストの

headと tailへの分割と、再帰呼び出し。全部揃っています。畳み込みの伝統的
なパターンなので、畳み込みとして実装する方法を見てみましょう。

oyaji (20170810-501DAE64)

102 第 6章 モジュール

findKey :: (Eq k) => k -> [(k, v)] -> Maybe v
findKey key xs = foldr

(\(k, v) acc -> if key == k then Just v else acc)
Nothing xs

NOTE このようなリストに対する標準的な再帰パターンでは、再帰を明示的に書くよりも、
畳み込みを使うほうがよいでしょう。そのほうが読みやすく理解しやすいからです。
foldrの呼び出しは誰が見ても畳み込みですが、明示的な再帰を読むには考える時間
が必要です。

ghci> findKey "penny" phoneBook
Just "853-2492"
ghci> findKey "betty" phoneBook
Just "555-2938"
ghci> findKey "wilma" phoneBook
Nothing

まるで魔法みたい！ 好きな子の電話番号を持っていればその子の Just な番
号が手に入り、そうでなければ Nothingで何も手に入りません。

Data.Map に潜入せよ
今実装したのは、Data.Listにある lookup

関数です。キーに対応した値が欲しければ、見
つかるまですべての要素を走査する必要があ
ります。
実は、はるかに高速な連想リストと豊富な
ユーティリティ関数が Data.Map モジュール
にあります。これからは「連想リストを使う」
という代わりに「Mapを使う」ということに
します。

Data.Map は Prelude や Data.List と競
合する名前をエクスポートしているので、修
飾付きインポートします。

import qualified Data.Map as Map

この import 文をスクリプトに書いて、それからそのスクリプトを GHCi で
ロードします。

Data.Map の fromList 関数を使って、連想リストを Map に変換します。
fromListは連想リスト（リストの形をしている）を受け取り、同じ対応関係を
持つMapを返します。まずは fromListで少し遊んでみましょう。

oyaji (20170810-501DAE64)

6.3 キーから値へのマッピング 103

ghci> Map.fromList [(3,"shoes"),(4,"trees"),(9,"bees")]
fromList [(3,"shoes"),(4,"trees"),(9,"bees")]
ghci> Map.fromList ⇨

[("kima","greggs"),("jimmy","mcnulty"),("jay","landsman")]
fromList [("jay","landsman"),("jimmy","mcnulty"),("kima","greggs")]

Data.MapのMapは、もうリストでも何でもありませんが、ターミナルに表
示されるときは fromListに続けてそのMapを表現する連想リストが出力され
ます。
元の連想リストに重複したキーがあった場合、後のほうの要素が使われます。

ghci> Map.fromList [("MS",1),("MS",2),("MS",3)]
fromList [("MS",3)]

fromListの型シグネチャは、こうです。

Map.fromList :: (Ord k) => [(k, v)] -> Map.Map k v

これは、型 kと vのペアのリストを受け取り、型 kをキー、型 vを値とする
Mapを返すと読めます。普通のリストによる連想リストでは、キーは等値比較
だけできればよかったのですが（つまり Eq型クラスに属する型であればよかっ
た）、Mapでは順序比較が必要なことに注意してください。これは Data.Mapモ
ジュールの本質的な制約です。 Data.Mapモジュールは、キーが順序付けされて
いることを利用して、効率よくキーを配置したりキーにアクセスしたりできるの
です。
これで phoneBookを、連想リストからMapによる実装へと変更できます。き

ちんと型宣言も追記しましょう。

import qualified Data.Map as Map

phoneBook :: Map.Map String String
phoneBook = Map.fromList $

[("betty", "555-2938")
,("bonnie", "452-2928")
,("patsy", "493-2928")
,("lucille", "205-2928")
,("wendy", "939-8282")
,("penny", "853-2492")
]

いいね！ スクリプトを GHCiにロードして phoneBookで遊んでみましょう。
まず lookupを使って電話番号を検索してみます。 lookupはキーとMapを受
け取り、対応する値をMapから探します。成功したら値を Justで包んで返し、
失敗したら Nothingを返します。

ghci> :t Map.lookup
Map.lookup :: (Ord k) => k -> Map.Map k a -> Maybe a

oyaji (20170810-501DAE64)

104 第 6章 モジュール

ghci> Map.lookup "betty" phoneBook
Just "555-2938"
ghci> Map.lookup "wendy" phoneBook
Just "939-8282"
ghci> Map.lookup "grace" phoneBook
Nothing

お次は、 phoneBook に電話番号を挿入して新しい Map を作りましょう。
insertはキーと値、それにMapを受け取り、そのMapにキーと値を挿入した
新しいMapを返します。

ghci> :t Map.insert
Map.insert :: (Ord k) => k -> a -> Map.Map k a -> Map.Map k a
ghci> Map.lookup "grace" phoneBook
Nothing
ghci> let newBook = Map.insert "grace" "341-9021" phoneBook
ghci> Map.lookup "grace" newBook
Just "341-9021"

電話番号がいくつあるか調べてみましょう。 Data.Mapの size関数は、Map
を受け取り、そのサイズを返します。そのままです。

ghci> :t Map.size
Map.size :: Map.Map k a -> Int

ghci> Map.size phoneBook
6
ghci> Map.size newBook
7

この電話帳では、電話番号を文字列とし
て表現しています。今、文字列ではなく
Int のリストで電話番号を表現したいとし
ましょう。つまり、 "939-8282" ではなく
[9,3,9,8,2,8,2]のように電話番号を持つの
です。最初に、電話番号の文字列を Int のリ
ストに変換する関数を作ります。 Data.Char

の digitToInt を文字列に対してマップすれ
ばよさそうです。しかし、この関数は文字列
にダッシュ（「 - 」）が出てきたらお手上げで

す！ そのため、事前に数字以外を取り除いておく必要があります。それには、
文字が数字かどうかを教えてくれる Data.Charの isDigit関数が使えます。文
字列をフィルタしてしまえば、あとは digitToIntをマップするだけです。

string2digits :: String -> [Int]
string2digits = map digitToInt . filter isDigit

oyaji (20170810-501DAE64)

6.3 キーから値へのマッピング 105

あ、もしまだなら、 import Data.Charをインポートするのを忘れずに！
試してみましょう。

ghci> string2digits "948-9282"
[9,4,8,9,2,8,2]

たいへんよくできました！では、Data.Mapの map関数を使って、phoneBook

を string2digitsでマップしましょう。

ghci> let intBook = Map.map string2digits phoneBook
ghci> :t intBook
intBook :: Map.Map String [Int]
ghci> Map.lookup "betty" intBook
Just [5,5,5,2,9,3,8]

Data.Mapの mapは、関数とMapを受け取り、その関数をMapの中の各値
に適用します。
電話帳を拡張してみましょう。一人が複数の番号を持っていて、連想リストが
次のように与えられたとします。

phoneBook =
[("betty", "555-2938")
,("betty", "342-2492")
,("bonnie", "452-2928")
,("patsy", "493-2928")
,("patsy", "943-2929")
,("patsy", "827-9162")
,("lucille", "205-2928")
,("wendy", "939-8282")
,("penny", "853-2492")
,("penny", "555-2111")
]

これに対して単純に fromListを使ってしまうと、番号がいくつか失われてし
まいます！ 代わりに Data.Map にある別の関数、 fromListWith を使います。
この関数は fromList と似ていますが、キーの重複を削除しません。その代わ
り、重複時にどうするかを決める関数を受け取ります。

phoneBookToMap :: (Ord k) => [(k, String)] -> Map.Map k String
phoneBookToMap xs = Map.fromListWith add xs

where add number1 number2 = number1 ++ ", " ++ number2

fromListWithは、すでに存在するキーを見つけると、与えられた結合関数に
それら競合する 2つの値を渡し、得られた値で古い値を置き換えます。

ghci> Map.lookup "patsy" $ phoneBookToMap phoneBook
"827-9162, 943-2929, 493-2928"
ghci> Map.lookup "wendy" $ phoneBookToMap phoneBook
"939-8282"

oyaji (20170810-501DAE64)

106 第 6章 モジュール

ghci> Map.lookup "betty" $ phoneBookToMap phoneBook
"342-2492, 555-2938"

あらかじめ連想リストの値を単一要素のリストにしておけば、電話番号を連結
するのに ++が使えます。

phoneBookToMap :: (Ord k) => [(k, a)] -> Map.Map k [a]
phoneBookToMap xs = Map.fromListWith (++) $ map (\(k, v) -> (k, [v])) xs

GHCiでテストしてみましょう。

ghci> Map.lookup "patsy" $ phoneBookToMap phoneBook
["827-9162","943-2929","493-2928"]

とても簡潔ですね！
番号の連想リストからMapを作って、そのキーに対する値の中の最大値を保
持したいとしましょう。このように書けます。

ghci> Map.fromListWith max ⇨
[(2,3),(2,5),(2,100),(3,29),(3,22),(3,11),(4,22),(4,15)]

fromList [(2,100),(3,29),(4,22)]

同じキーの値を足し合わせることもできます。

ghci> Map.fromListWith (+) ⇨
[(2,3),(2,5),(2,100),(3,29),(3,22),(3,11),(4,22),(4,15)]

fromList [(2,108),(3,62),(4,37)]

Data.Map などの Haskell が提供するモジュールがとってもクールなことが
分かったところで、自分でモジュールを作る方法を見ていきましょう。

6.4 モジュールを作ってみよう
この章の冒頭で言ったように、プログ

ラムを書くときに、似たような目的の関
数と型をまとめてモジュールに分ける
のは良い習慣です。そうすれば、そのモ
ジュールをインポートするだけで、それ
らの関数を他のプログラムから簡単に再
利用できるようになります。
モジュールからは関数をエクスポート

します。モジュールをインポートすると、そのモジュールがエクスポートする関
数が使えるようになります。モジュールの内部で使う関数も定義できますが、モ
ジュールの外で使えるのはエクスポートした関数だけです。

oyaji (20170810-501DAE64)

6.4 モジュールを作ってみよう 107

幾何学モジュール
幾何学オブジェクトの体積と面積を計算する小さいモジュールを例に、モ

ジュールの作り方を見ていきます。まずは Geometry.hsという名前のファイル
を作ることから始めます。
モジュールの先頭でモジュールの名前を指定します。Geometry.hs という
ファイル名なら、 Geometryという名前にしなければなりません。そのモジュー
ルがエクスポートする関数を指定して、それから関数を追加します。なので、モ
ジュールはこのようなコードから始まります。

module Geometry
(sphereVolume
, sphereArea
, cubeVolume
, cubeArea
, cuboidArea
, cuboidVolume
) where

見てのとおり、球（sphere）、立方体（cube）、直方体（cuboid）の体積、表
面積を求める予定です。球はグレープフルーツのような丸い形で、立方体はサイ
コロのような形で、直方体はタバコの箱のような形です（子供はタバコ吸っちゃ
ダメだよ！）。
では関数を定義しましょう。

module Geometry
(sphereVolume
, sphereArea
, cubeVolume
, cubeArea
, cuboidArea
, cuboidVolume
) where

sphereVolume :: Float -> Float
sphereVolume radius = (4.0 / 3.0) * pi * (radius ^ 3)

sphereArea :: Float -> Float
sphereArea radius = 4 * pi * (radius ^ 2)

cubeVolume :: Float -> Float
cubeVolume side = cuboidVolume side side side

cubeArea :: Float -> Float
cubeArea side = cuboidArea side side side

oyaji (20170810-501DAE64)

108 第 6章 モジュール

cuboidVolume :: Float -> Float -> Float -> Float
cuboidVolume a b c = rectArea a b * c

cuboidArea :: Float -> Float -> Float -> Float
cuboidArea a b c = rectArea a b * 2 + rectArea a c * 2 +
rectArea c b * 2

rectArea :: Float -> Float -> Float
rectArea a b = a * b

とても基本的な幾何学ですが、注意点がいくつかあります。立方体は直方体の
特別なケースなので、その表面積と体積は、すべての辺が同じ長さの直方体とし
て扱うことで定義しています。また、辺の長さから長方形の面積を求めるのに、
rectAreaという補助関数を定義しています。単なる掛け算なので取るに足らな
い関数です。この関数をモジュール内（の cuboidArea と cuboidVolume ）で
使っているけど、エクスポートはしていないことに気をつけてください！ これ
は、このモジュールは三次元のオブジェクトを扱う関数だけをエクスポートする
ようにしたいからです。
モジュールを作成したら、インターフェイスとしての役割をする関数のみを
エクスポートするようにします。そうすれば実装は隠蔽されます。 Geometryモ
ジュールの利用者は、エクスポートされていない関数のことを気にする必要はあ
りません。新しいバージョンで関数を完全に書き換えたり削除したりしても（例
えば rectAreaを削除して代わりに *を使うとか）、エクスポートしていない関
数のことなので誰も気づきません。
このモジュールを使うには次のようにするだけです。

import Geometry

ただし、Geometry.hs がインポートするモジュールと同じフォルダになけれ
ばいけません。

階層的モジュール
モジュールには階層構造を与えることもできます。各モジュールは複数のサ

ブモジュールを持つことができ、そのサブモジュールはまたサブモジュールを持
つことができます。幾何学モジュール Geometryを分割して、立体の種類ごとの
3つのサブモジュールを持つモジュールにしてみましょう。
最初に、Geometryという名前のフォルダを作ります。その中に 3つのファイ

ル、Sphere.hs、Cuboid.hs、Cube.hsを作ります。3つのファイルの中身をそ
れぞれ見てみましょう。
Sphere.hsの内容は次のとおりです。

oyaji (20170810-501DAE64)

6.4 モジュールを作ってみよう 109

module Geometry.Sphere
(volume
, area
) where

volume :: Float -> Float
volume radius = (4.0 / 3.0) * pi * (radius ^ 3)

area :: Float -> Float
area radius = 4 * pi * (radius ^ 2)

Cuboid.hsは次のようになっています。

module Geometry.Cuboid
(volume
, area
) where

volume :: Float -> Float -> Float -> Float
volume a b c = rectArea a b * c

area :: Float -> Float -> Float -> Float
area a b c = rectArea a b * 2 + rectArea a c * 2 + rectArea c b * 2

rectArea :: Float -> Float -> Float
rectArea a b = a * b

最後は次のような Cube.hsです。

module Geometry.Cube
(volume
, area
) where

import qualified Geometry.Cuboid as Cuboid

volume :: Float -> Float
volume side = Cuboid.volume side side side

area :: Float -> Float
area side = Cuboid.area side side side

Sphere.hs を Geometry フォルダの中に配置して、
Geometry.Sphereという名前のモジュールを定義して
いることに注目してください。立方体と直方体でも同
じようにしました。また、3 つのモジュールすべてで
同じ名前の関数を定義していることにも注目してくだ
さい。これが可能なのは別々のモジュールにあるから
です。
これで、こんなふうにインポートできるようになりました。

oyaji (20170810-501DAE64)

110 第 6章 モジュール

import Geometry.Sphere

インポートしたら、球の表面積と体積を求める areaと volume 関数を呼び出
すことができます。

2つ、あるいはそれ以上のモジュールを操作したいなら、修飾付きインポート
を使う必要があります。同じ名前の関数をエクスポートしているからです。次
はその例です。

import qualified Geometry.Sphere as Sphere
import qualified Geometry.Cuboid as Cuboid
import qualified Geometry.Cube as Cube

Sphere.area、 Sphere.volume、 Cuboid.area のようにすれば、対応する
立体の表面積あるいは体積を求めることができます。
とても大きくて、とてつもない数の関数を含むファイルを書いていることに気
づいたときは、共通して使える関数を見つけ出し、それをモジュールに切り出す
ことを検討しましょう。そうすれば、次に同じ機能が必要なプログラムを書くと
きは、モジュールをインポートするだけで済むようになります。

oyaji (20170810-501DAE64)

第7章
型や型クラスを
自分で作ろう

これまで、 Bool、 Int、 Char、 Maybe

などなど、いろんなデータ型が出てきまし
た。じゃあ、自分でデータ型を作るにはどう
すればよいのでしょうか？ この章では、独
自の型を作り、それを動かす方法を見ていき
ます！

7.1 新しいデータ型を定義する
自作のデータ型を作る方法の 1 つは data キーワードを使うことです。まず

は、標準ライブラリで Bool型の定義がどうなっているか見てみましょう。

data Bool = False | True

こういうふうに dataキーワードを使うと、新しいデータ型を定義する構文に
なります。等号の前の部分は型の名前、ここでは Boolを表します。等号の後の
部分は値コンストラクタです。値コンストラクタは、この型が取り得る値の種類
を指定しています。記号 |はまたはの意味です。というわけで、この型宣言は、
「 Bool 型は True または False の値を取り得る」と読めます。型名と値コンス
トラクタはどちらも大文字で始まる必要があります。
同様に、 Int型はこのように定義されているとみなせます。

data Int = -2147483648 | -2147483647 | ... | -1 |
0 | 1 | 2 | ... | 2147483647

最初と最後の値は Int が取り得る最小値と最大値です。もちろん実際の Int

はこのように定義されているわけではありません（途中の数が省略されてますし

111

oyaji (20170810-501DAE64)

112 第 7章 型や型クラスを自分で作ろう

ね）。でも、概念を説明するには便利でしょう？
さて、Haskellで図形を表すにはどうしますか？ タプル（この場合はトリプ

ル）を使うという手があります。例えば、円は (43.1, 55.0, 10.4)と表せま
す。1つ目と 2つ目の数字が円の中心の座標で、3つ目が円の半径です。この表
記の問題点は、三次元ベクトルみたいな、実数の 3 つ組で指定できる任意のも
のを表せてしまうことです。より良い解決策は、図形を表す型を自作することで
しょう。

7.2 形づくる
ここでは、長方形と円という 2種類の図形を扱うことにしましょう。こんなや

り方が考えられます。

data Shape = Circle Float Float Float |
Rectangle Float Float Float Float

これはどういう意味でしょう？ 次のように解釈してください。 Circle値コ
ンストラクタには、浮動小数を受け取るフィールドが 3 つあります。このよう
に、値コンストラクタを書くときは後ろに型を付け足すことができ、それらは値
コンストラクタに与える引数の型になります。ここでは、最初の 2つのフィール
ドは円の中心の座標で、3つ目のフィールドは円の半径です。一方、 Rectangle

値コンストラクタには浮動小数を受けるフィールドが 4 つあります。最初の 2
つは左下の角、後の 2つは右上の角の座標を表します。
実のところ値コンストラクタは、最終的にそのデータ型の値を返す関数なので
す。これら 2つの値コンストラクタの型シグネチャを見てみましょう。

ghci> :t Circle
Circle :: Float -> Float -> Float -> Shape
ghci> :t Rectangle
Rectangle :: Float -> Float -> Float -> Float -> Shape

というわけで、値コンストラクタは何の変哲もない関数です。意外でしょう？
データ型にあったフィールドは、値コンストラクタ関数にとっての引数に対応し
ます。
では、 Shapeを引数に取って、その面積を返す関数を作ってみましょう。

area :: Shape -> Float
area (Circle _ _ r) = pi * r ^ 2
area (Rectangle x1 y1 x2 y2) = (abs $ x2 - x1) * (abs $ y2 - y1)

まず型宣言に注目です。 areaは、Shapeを取って Floatを返す関数だよ、と
言っています。ここに例えば Circle -> Floatという型宣言を書くことはでき
ません。なぜなら Shape は型だけど Circle は型じゃなくて値コンストラクタ

oyaji (20170810-501DAE64)

7.2 形づくる 113

だからです（ちょうど、 True -> Intのような型宣言を持つ関数が書けないの
と同じことです）。
次に、コンストラクタはパターンマッチに使えることに注目です。これまでに
も、 []、 False、 5といった値に対するパターンマッチは行ってきました。し
かし、今までの値にはフィールドはありませんでした。フィールドがある値コン
ストラクタでパターンマッチを行いたい場合、まず値コンストラクタ名を書き、
それからフィールドを名前に束縛します。円の場合、必要なのは半径の情報だ
けで、円の位置を表す最初の 2 つのフィールドはいらないので、 _ で捨ててい
ます。

ghci> area $ Circle 10 20 10
314.15927
ghci> area $ Rectangle 0 0 100 100
10000.0

お、動いた！ でも Circle 10 20 5をプロンプトから表示しようとするとエ
ラーになります。これは、Haskellが今作ったデータ型を文字列にして表示する
方法を（まだ）知らないからです。プロンプトから何らかの値を表示しようとし
た場合、Haskellはまずその値に show関数を適用して文字列表記を得て、それ
を端末に表示します。
この Shape型を Show型クラスの一員にするには、型宣言をこう修正します。

data Shape = Circle Float Float Float |
Rectangle Float Float Float Float

deriving (Show)

今は、 derivingのことはあまり気にしないことにします。データ宣言の最後
に deriving (Show)と書けば（同じ行でも次の行でもかまいません）、Haskell
が自動的にこの型を Show型クラスのインスタンスにしてくれる、とだけ覚えて
おきましょう。 derivingについては 126ページからの「インスタンスの自動導
出」の節で詳細に見ていくことにします。
これで Shape型の値を表示できます。

ghci> Circle 10 20 5
Circle 10.0 20.0 5.0
ghci> Rectangle 50 230 60 90
Rectangle 50.0 230.0 60.0 90.0

値コンストラクタは関数ですから、普通に mapしたり、部分適用したりできま
す。例えば、半径だけ違う同心円のリストを作りたかったら、こう書けます。

ghci> map (Circle 10 20) [4,5,6,6]
[Circle 10.0 20.0 4.0,Circle 10.0 20.0 5.0,Circle 10.0 20.0 6.0,
Circle 10.0 20.0 6.0]

oyaji (20170810-501DAE64)

114 第 7章 型や型クラスを自分で作ろう

Point データ型で形を整える
いい感じにデータ型を自作できましたが、もっと良くできるんですよ。二次元

空間の点を表す中間データ構造を作りましょう。そうすれば図形をもっと分か
りやすくできます。

data Point = Point Float Float deriving (Show)
data Shape = Circle Point Float | Rectangle Point Point deriving (Show)

点を定義するとき、データ型と値コンストラクタに同じ名前を使いました。こ
こがポイントです。同じ名前にしておくことに特別な意味はないのですが、値
コンストラクタが 1 つしかないデータ型はそうするのが慣例です。というわけ
で、新しい Circle には 2 つのフィールドがあります。1 つは Point 型で、も
う 1つは Float型。これで、どのフィールドが何なのか分かりやすくなりまし
た。 Rectangle も同じことです。では、 area 関数にもこの変化を反映させま
しょう。

area :: Shape -> Float
area (Circle _ r) = pi * r ^ 2
area (Rectangle (Point x1 y1) (Point x2 y2))

= (abs $ x2 - x1) * (abs $ y2 - y1)

変更する必要があったのはパターンだけでした。 Circleパターンでは、点全
体を無視しています。 Rectangleパターンでは、パターンマッチをネストする
ことで、一気に点が属するフィールドへアクセスしています。（もし何らかの理
由で点全体も参照したくなったら、asパターンの使いどころですね。）
改良したバージョンを試してみましょう。

ghci> area (Rectangle (Point 0 0) (Point 100 100))
10000.0
ghci> area (Circle (Point 0 0) 24)
1809.5574

図形を動かす関数とかも欲しいですね。図形と、x軸方向への移動量、y軸方
向への移動量を取って、元の図形と同じ寸法だけど違う場所にある図形を返し
ます。

nudge :: Shape -> Float -> Float -> Shape
nudge (Circle (Point x y) r) a b = Circle (Point (x+a) (y+b)) r
nudge (Rectangle (Point x1 y1) (Point x2 y2)) a b

= Rectangle (Point (x1+a) (y1+b)) (Point (x2+a) (y2+b))

ずいぶん直感的に書けましたね。図形の位置を表す点に移動量を足し算すれ
ばいいわけです。試してみましょう。

ghci> nudge (Circle (Point 34 34) 10) 5 10
Circle (Point 39.0 44.0) 10.0

oyaji (20170810-501DAE64)

7.2 形づくる 115

もし点を直接触りたくないというのなら、指定したサイズの図形を原点に作る
補助関数を作って、それから移動させることもできます。
まず、半径を取って、座標系の原点を中心とし、与えられた半径の円を作る関

数を作りましょう。

baseCircle :: Float -> Shape
baseCircle r = Circle (Point 0 0) r

次に、幅と高さを取って、左下の頂点が原点にある長方形を作る関数を作りま
しょう。

baseRect :: Float -> Float -> Shape
baseRect width height = Rectangle (Point 0 0) (Point width height)

これらの関数を使えば、まず座標系の原点に図形を作って、それから望みの場
所まで移動させることができます。これで図形を作るのが楽になりますね。

ghci> nudge (baseRect 40 100) 60 23
Rectangle (Point 60.0 23.0) (Point 100.0 123.0)

Shapeをモジュールとしてエクスポートする
自作のデータ型も自作のモジュールからエクスポートできます。型をエクス

ポートするには、関数のエクスポートと同じところに型名を書くだけです。値コ
ンストラクタをエクスポートしたい場合は、型名の後に括弧を追加し、その中に
カンマ区切りで値コンストラクタを書きます。ある型の値コンストラクタをす
べてエクスポートしたい場合は、ピリオド 2つ (..)を書いてください。
図形を扱う関数と型をモジュールからエクスポートしたいとしたら、こう書き
始めます。

module Shapes
(Point(..)
, Shape(..)
, area
, nudge
, baseCircle
, baseRect
) where

Shape(..)と書くことで、 Shapeのすべての値コンストラクタがエクスポー
トされます。つまり、このモジュールをインポートした人は、 Rectangle と
Circle の値コンストラクタを使って図形を作れるようになります。この行は
Shape (Rectangle, Circle)と書いても同じことですが、 (..)を使うほうが
簡単ですね。

oyaji (20170810-501DAE64)

116 第 7章 型や型クラスを自分で作ろう

それに、エクスポートした型に後から値コンストラクタを追加することにした
場合でも、エクスポート文を変える必要がなくなります。 ..を使えば、その型
のすべての値コンストラクタが自動的にエクスポートされるからです。
一方、 Shapeのエクスポート文の後に括弧を付けないことで、 Shape型をエ

クスポートするけれどもその値コンストラクタは一切エクスポートしない、とい
う選択もできます。すると、このモジュールのユーザは補助関数 baseCircleと
baseRect経由でしか図形を作れなくなります。以下のモジュールを Shapes.hs

というファイル名で保存した上で、

module Shapes
(Point, Shape, area, nudge, baseCircle, baseRect) where

data Point = Point Float Float deriving (Show)
data Shape = Circle Point Float |

Rectangle Point Point deriving (Show)

area :: Shape -> Float
area (Circle _ r) = pi * r ^ 2
area (Rectangle (Point x1 y1) (Point x2 y2))
= (abs $ x2 - x1) * (abs $ y2 - y1)

nudge :: Shape -> Float -> Float -> Shape
nudge (Circle (Point x y) r) a b = Circle (Point (x+a) (y+b)) r
nudge (Rectangle (Point x1 y1) (Point x2 y2)) a b
= Rectangle (Point (x1+a) (y1+b)) (Point (x2+a) (y2+b))

baseCircle :: Float -> Shape
baseCircle r = Circle (Point 0 0) r

baseRect :: Float -> Float -> Shape
baseRect width height = Rectangle (Point 0 0) (Point width height)

同じフォルダに以下のような Main.hsを作って動かしてみてください。

import Shapes
main = do
print $ Circle (Point 10 20) 30

Haskellに「 Circleに Point？ そのようなものは存じておりませんが。」と
冷たくあしらわれましたね？ このようにして Haskellは Shapesモジュールの
プライバシーを完璧に守るのです。一方、Main.hs を次のように書き直せば、
Shapes モジュールが許可しているものしか使っていないので、ちゃんと動き
ます。

import Shapes
main = do
print $ nudge (baseCircle 30) 10 20

oyaji (20170810-501DAE64)

7.3 レコード構文 117

値コンストラクタは、フィールドを引数に取ってデータ型（例えば Shape型）
の値を返す関数にすぎないのでした。値コンストラクタをエクスポートしない、
という選択をすれば、このモジュールをインポートする人が値コンストラクタを
関数として直接使うことを防ぐことになります。データ型の値コンストラクタ
をエクスポートしないことで、データ型の実装を隠し、データ型の抽象度を上げ
られます。また、値コンストラクタを使ったパターンマッチもできなくなりま
す。ユーザには必ずモジュールの提供する補助関数を使ってデータ型にアクセ
スしてほしい、という場合には、値コンストラクタをエクスポートしないことが
望ましい選択になります。そうすれば、モジュールのユーザはモジュール内部の
詳細を知る必要がなくなりますし、モジュールの作者にとってもエクスポートし
た関数の振る舞いが同じである限り内部の実装を自由に変えられるという利点
があります†1。

Data.Mapはこのアプローチを取っています。どう頑張っても、値コンストラ
クタから直接Mapを作ることはできません。エクスポートされていないからで
す。ですが、 Map.fromListのような補助関数を使ってMapを作ることは普通
にできます。おかげで Data.Mapの作者たちは、既存のプログラムを壊す心配な
く、自由にMapの内部表現を変更できるのです。
でも単純なデータ型に対しては、値コンストラクタをエクスポートするのも何
ら問題のない方針ですよ。

7.3 レコード構文
今度はデータ型を作る別の方法を見

ていきましょう。人物を記述するデー
タ型を作る仕事を任されたとします。
人物に関しては、その名前、苗字、年
齢、身長、電話番号、好きなアイスク
リームの味を記録することにしましょ
う（これだけ分かれば人物の記録に十
分です。少なくとも僕は）。さっそくやってみましょう！

data Person = Person String String Int Float String String
deriving (Show)

最初のフィールドは名前、次が苗字、次が年齢、という具合です。では人物を
作ってみましょう。

†1 ［訳注］このように、ユーザに必要なだけの操作法を提供するが、実装の詳細は隠されているようなデータ
型のことを抽象データ型と呼びます。

oyaji (20170810-501DAE64)

118 第 7章 型や型クラスを自分で作ろう

ghci> let guy = Person "Buddy" "Finklestein" 43 184.2 "526-2928" ⇨
"Chocolate"

ghci> guy
Person "Buddy" "Finklestein" 43 184.2 "526-2928" "Chocolate"

ちょっと読みにくいですが、それっぽいものができました。
では、特定の情報を取り出すにはどうすればいいでしょう？ 人物の名前を取
り出す関数とか、苗字を取り出す関数とかが必要ですよね。こういう定義が必要
そうです。

firstName :: Person -> String
firstName (Person firstname _ _ _ _ _) = firstname

lastName :: Person -> String
lastName (Person _ lastname _ _ _ _) = lastname

age :: Person -> Int
age (Person _ _ age _ _ _) = age

height :: Person -> Float
height (Person _ _ _ height _ _) = height

phoneNumber :: Person -> String
phoneNumber (Person _ _ _ _ number _) = number

flavor :: Person -> String
flavor (Person _ _ _ _ _ flavor) = flavor

やれやれ。こんなの書いてても全然楽しくないっすね！ まあ、穴あきだらけ
で飽き飽きするようなコードですが、この方法で動くことは動きます。

ghci> let guy = Person "Buddy" "Finklestein" 43 184.2 "526-2928" ⇨
"Chocolate"

ghci> firstName guy
"Buddy"
ghci> height guy
184.2
ghci> flavor guy
"Chocolate"

「でも、もっとマシな方法があるんでしょ！」と思ったかもしれませんね。お
あいにくさまですが、ありません。
うそだよー、ありますよ！ ハッハッハッ！
Haskellにはデータ型を書くための構文がもう 1つ備わっています。それはレ

コード構文です。次のようにして同じ機能を実現できます。

oyaji (20170810-501DAE64)

7.3 レコード構文 119

data Person = Person { firstName :: String
, lastName :: String
, age :: Int
, height :: Float
, phoneNumber :: String
, flavor :: String } deriving (Show)

このようにレコード構文では、フィールドの型名だけをスペース区切りで列挙
する代わりに、中括弧を使います。まずフィールドの名前（例えば firstName）
を書き、次に ::を書き、それから型を書きます。出来上がったデータ型は以前
のものとまったく同じです。この構文の利点は、データ型と同時にフィールドを
取得する関数たちが作られることです。この型をレコード構文を使って定義した
ことで、Haskellは firstName、 lastName、 age、 height、phoneNumber、
flavorという 6つの関数を自動的に作ってくれるのです。見てください。

ghci> :t flavor
flavor :: Person -> String
ghci> :t firstName
firstName :: Person -> String

レコード構文にはもう 1つ利点があります。 Showのインスタンスを自動導出
（derive）するとき、レコード構文を使って定義しインスタンス化した型は、そ
うでない型とは違う表示の仕方になります。
例えば自動車を表す型があるとしましょう。メーカー、モデル名、生産された

年を記録したいとします。この型は、レコード構文を使わない場合はこのように
定義できます。

data Car = Car String String Int deriving (Show)

自動車は、例えばこのように表示されます。

ghci> Car "Ford" "Mustang" 1967
Car "Ford" "Mustang" 1967

では、レコード構文を使って定義した場合は何が起こるでしょうか。

data Car = Car { company :: String
, model :: String
, year :: Int
} deriving (Show)

今度はこのようにして自動車が作れます。

ghci> Car {company="Ford", model="Mustang", year=1967}
Car {company = "Ford", model = "Mustang", year = 1967}

このときフィールドを元どおりの順番で指定する必要はありません。ただし、
すべてのフィールドを埋める必要はあります。一方、レコード構文を使わなかっ

oyaji (20170810-501DAE64)

120 第 7章 型や型クラスを自分で作ろう

た場合は、フィールドを順番どおりに指定する必要があります。
値コンストラクタに複数のフィールドがあり、どのフィールドが何番目なのか

紛らわしい場合は、レコード構文を使ってください。三次元ベクトルのデータ型
を data Vector = Vector Int Int Intとして作った場合は、フィールドがベ
クトルの成分であることは明らかです。一方、 Personや Carの例ではフィール
ドがそこまで自明ではないので、レコード構文を使うほうが圧倒的に便利です。

7.4 型引数
値コンストラクタは引数を取って新

しい値を生み出すのでした。例えば、
Car という値コンストラクタは 3 つの
値を取って stangのような自動車を表
す値を作ります。同様に、型コンスト
ラクタは型を引数に取って新しい型を
作るものです。何だかとってもメタな
概念のように聞こえるかもしれません
が、そんなに複雑なものじゃないです
よ（C++のテンプレートをご存知なら
似てると思うかもしれません）。型引数
がどう使われるか明確なイメージをつ
かむために、すでに知っている型がどん
な実装になっているか見てみましょう。

data Maybe a = Nothing | Just a

この aが型引数です。そして型引数を取っているので、Maybeは型コンストラ
クタと呼ばれます。 Nothingでない場合に何をこのデータ型に保持させたいか
に応じて、この型コンストラクタから Maybe Int、Maybe Car、Maybe String
などの型を作れます。単なる Maybeという型の値は存在できません。なぜなら、
Maybe は型コンストラクタであって、型ではないからです。型コンストラクタ
は、すべての引数を埋めて初めて何かしらの値の型になれます。

Char を Maybe の型引数に渡すと Maybe Char という型が得られます。例え
ば Just 'a'という値は Maybe Charという型を持つわけです。
たいていは型コンストラクタに型引数を明示的に渡さずに済みます。Haskell
には型推論があるからです。例えば Just 'a'という値を作ると、Haskellはそ
の型が Maybe Charであることを推論してくれます。

oyaji (20170810-501DAE64)

7.4 型引数 121

明示的に型を型引数として渡したければ、型の世界で行う必要があります。
Haskellでは、 ::記号の右側が型の世界です。この手法は、例えば Just 3に
Maybe Intという型を持ってほしい場合に便利です。デフォルトでは、Haskell
はこの値の型を (Num a) => Maybe a だと推論するでしょう。明示的な型注
釈を使えば、型の制限をちょっとだけキツくできます。

ghci> Just 3 :: Maybe Int
Just 3

気づかなかったかもしれませんが、実は Maybe を使うより前に型引数を使っ
ていました。それはリスト型です。構文糖衣があるので分かりにくいですが、リ
スト型は 1つの型引数を取って具体型を生成するものなのです。 [Int]型の値、
[Char]型の値、[[String]]型の値、などはありますが、[]型の値というのは
作れません。

NOTE 具体型とは、型引数を 1 つも取らない型か、あるいは、型引数を取るけれどもそれ
がすべて埋まっている型のことを指します。前者の例は Int や Bool 、後者の例は
Maybe Charです。何らかの値があったら、その型は常に具体型です。

Maybe型で遊んでみましょう。

ghci> Just "Haha"
Just "Haha"
ghci> Just 84
Just 84
ghci> :t Just "Haha"
Just "Haha" :: Maybe [Char]
ghci> :t Just 84
Just 84 :: (Num a) => Maybe a
ghci> :t Nothing
Nothing :: Maybe a
ghci> Just 10 :: Maybe Double
Just 10.0

型引数が便利なのは、さまざまな型を収納するデータ型を作れるところです。
例えば Maybeを定義するのに、中身の型ごとに別々の型にすることもできなく
はありません。

data IntMaybe = INothing | IJust Int

data StringMaybe = SNothing | SJust String

data ShapeMaybe = ShNothing | ShJust Shape

でも、型引数を使ってどんな型の値でも収納できる汎用の Maybeを作ったほ
うが便利ですよね！

oyaji (20170810-501DAE64)

122 第 7章 型や型クラスを自分で作ろう

Nothingの型が Maybe aであることに注意してください。この型は型引数が
ある、つまり Maybe aの aがあるので、多相的です。もし、 Maybe Intを引数
に取る関数があれば、それに Nothingを渡すことができます。 Nothingは値を
含んでいないので、どのみち問題ないわけです。このように、 Maybe a型の値
は、 Maybe Int型が要求される場所でも使えます。ちょうど、 5は Intとして
も Double としても使えるのと同じことです。同様に、空リストの型は [a] で
す。これが、 [1,2,3] ++ [] という使い方も ["ha","ha","ha"] ++ []とい
う使い方も同時にできる理由です。

自動車は型引数を取るべきか？
型引数を使うのがよいのは、どういうときでしょうか？ 普通、型引数は Maybe

 a型のような、どんな型をそこに持ってきても変わらず動作するようなデータ
型に使うものです。ある型が何らかの箱のように振る舞うなら、型引数を使うと
よいでしょう。

Carデータ型がありましたよね。

data Car = Car { company :: String
, model :: String
, year :: Int
} deriving (Show)

これをこう書き換えてみましょう。

data Car a b c = Car { company :: a
, model :: b
, year :: c
} deriving (Show)

でも、これって何かメリットあるの？
たぶん皆無です。どうせ Car String String Int を扱う関数しか作らない

でしょうから。例えば、最初に定義した Carを使えば、自動車の情報を読みやす
い形で表示する関数はこう書けます。

tellCar :: Car -> String
tellCar (Car {company = c, model = m, year = y}) =

"This " ++ c ++ " " ++ m ++ " was made in " ++ show y

試してみましょう。

ghci> let stang = Car {company="Ford", model="Mustang", year=1967}
ghci> tellCar stang
"This Ford Mustang was made in 1967"

かわいい関数ですね！ 型宣言も小さくまとまってるし、ちゃんと動きます。
では、 Carが Car a b cだったらどうなるでしょう？

oyaji (20170810-501DAE64)

7.4 型引数 123

tellCar :: (Show a) => Car String String a -> String
tellCar (Car {company = c, model = m, year = y}) =

"This " ++ c ++ " " ++ m ++ " was made in " ++ show y

この関数には、 (Show a) => Car String String aという特殊化した Car

型を取らせる必要があります。そのため、ご覧のとおり型シグネチャはだいぶ複
雑になっちゃいました。メリットといえば、 Show型クラスのインスタンスなら
何でも cの箇所に取れるようになったことくらいです。

ghci> tellCar (Car "Ford" "Mustang" 1967)
"This Ford Mustang was made in 1967"
ghci> tellCar (Car "Ford" "Mustang" "nineteen sixty seven")
"This Ford Mustang was made in \"nineteen sixty seven\""
ghci> :t Car "Ford" "Mustang" 1967
Car "Ford" "Mustang" 1967 :: (Num t) => Car [Char] [Char] t
ghci> :t Car "Ford" "Mustang" "nineteen sixty seven"
Car "Ford" "Mustang" "nineteen sixty seven" :: Car [Char] [Char] [Char]

でも、実用上は Car String String Int を使うことが圧倒的に多いでしょ
う。だから、 Carを多相型にしても労力に見合わないというものです。
普通、型引数を使うのは、データ型の値コンストラクタに収納された型が、
データ型自体の動作にそこまで重要な影響を与えないときです。例えば「物」の
リストは、中身の物が何であれ、とりあえずリストはリストです。数のリストの
合計を求めたくなったら、特に数のリストを引数に取る総和関数を後から作れば
いいわけです。 Maybeについても同じことが言えます。 Maybeは、ある物を 1
つ持つか持たないかの選択肢を表しているのであって、その物が何型であるかと
は関係ありません。
これまでに出てきた中では、 Data.Mapモジュールの Map k vも多相型です。

kはMapのキーの型で、 vはMapの値の型です。これは型引数が大活躍でき
ている例ですね。Mapが多相化されていることで、どんな型からどんな型への
Mapでも作れます。もっとも、キーの型のほうは Ordに属しているという条件
付きですが。ところで、 Data.Mapの作者には、データ型宣言にこうやって型ク
ラス制約を加えるという選択もあったでしょう。

data (Ord k) => Map k v = ...

しかし Haskellには、データ宣言には決して型クラス制約を付けないという、
とても強いコーディング規約があります†2。なぜかって？ それは、データ宣言
に型クラス制約を付けても大した利益がない割に、型クラス制約をそこら中、必
要ない箇所にまで書いてまわる羽目になるからです。もし Map k vのデータ宣

†2 ［訳注］データ宣言に型クラス制約を付ける機能は、次の Haskell 2012で削除する予定で、現在の GHC
（7.2.1以降）ではデフォルトでは無効化され非推奨とされているほどです。

oyaji (20170810-501DAE64)

124 第 7章 型や型クラスを自分で作ろう

言に Ord kという型クラス制約があっても、Mapのキーが順序付け可能である
ことを仮定する関数には、やっぱり型クラス制約を書く必要があります。これ
に対し、データ宣言に型クラス制約がなければ、キーの型が順序付け可能であ
ることを仮定しない関数からは (Ord k) => を省くことができます。その一例
が、Map を取って連想リストに変換する関数 toListです。こいつの型シグネ
チャは toList :: Map k a -> [(k, a)]です。もし Map k vのデータ宣言に
型クラス制約が付いていたら、 toListの型も toList :: (Ord k) => Map k

a -> [(k, a)] となる必要があったでしょう。 toList関数自体はキーの順序
比較をまったく使わないというのに。
というわけで、このデータ宣言にはこの型クラス制約を付けるのが当然だろ、
と思える場合でも、決して型クラス制約を付けないでください。どのみち関数の
型宣言には型クラス制約を付ける必要があるんです。

三次元ベクトル
三次元ベクトルの型と、ベクトルの演算を作ってみましょう。ベクトルは多相

型にします。なぜなら、普通は数値型に限るとしても、Int、Integer、Double

など複数の型をサポートしたいからです。

data Vector a = Vector a a a deriving (Show)

vplus :: (Num a) => Vector a -> Vector a -> Vector a
(Vector i j k) ‘vplus‘ (Vector l m n) = Vector (i+l) (j+m) (k+n)

dotProd :: (Num a) => Vector a -> Vector a -> a
(Vector i j k) ‘dotProd‘ (Vector l m n) = i*l + j*m + k*n

vmult :: (Num a) => Vector a -> a -> Vector a
(Vector i j k) ‘vmult‘ m = Vector (i*m) (j*m) (k*m)

ベクトルとは空間の中の矢印のようなものだと思ってください。どこかを指
している線分です。ベクトル Vector 3 4 5は三次元空間の座標 (0,0,0)を始
点とし、 (3,4,5)を終点（そこを指している）とする線分です。
ベクトルを扱う関数はこのような実装になっています。s vplus関数は 2つのベクトルを加算します。これは両ベクトルの対応す
る成分を加算することで実現できます。2つのベクトルを加算すると、片
方のベクトルを他方のベクトルの終点に継ぎ足したようなベクトルができ
ます。こうして 2つのベクトルを加算すると第三のベクトルになります。s dotProd関数は 2つのベクトルの内積を取ります。内積の結果はただの
数（スカラー）で、これはベクトルの成分を組にして乗算し、その和を取

oyaji (20170810-501DAE64)

7.4 型引数 125

ることで計算できます。2つのベクトルの内積は、2つのベクトルが成す
角を求めるのに便利です。s vmult 関数はベクトルをスカラー倍します。ベクトルと数（スカラー）
の乗算は、ベクトルの各要素にスカラーを掛け算することで実現され、そ
の結果、ベクトルは同じ方向を指したまま、長さが伸びたり縮んだりし
ます。

これらの関数は、Vector aという形であればどんな型でも扱えます。ただし、
aは Num型クラスのインスタンスであるという条件付きです。例えば、 Vector

 Int や Vector Integer、 Vector Floatなどは、 Int も Integer も Float

も型クラス Numのインスタンスなので扱うことができますが、 Vector Charや
Vector Boolは扱うことができません。
また、型宣言をよく見ると分かるように、ベクトルを扱う関数は要素型が同じ
ベクトルどうししか演算できず、演算にからむスカラーも要素と同じ型である
必要があります。 Vector Intと Vector Doubleを加算することはできないの
です。
データ宣言には Num 型クラス制約が付いていませんね。前の節で説明したと
おり、データ宣言に Numを付けたところで、関数に付いている Numを省くこと
はできません。
念を押しておきますが、型コンストラクタと値コンストラクタを区別しておく
ことはとても重要です。データ型を宣言するとき、=の前にあるのが型コンスト
ラクタであり、後ろにある（あるいは |で区切られたその後ろにある）のが値コ
ンストラクタです。例えば、関数にこのような型を与えるのは間違いです。

Vector a a a -> Vector a a a -> a

これが動かないのは、ベクトルの型は Vector aであって、 Vector a a aで
はないからです。ベクトルは、型としてはあくまで引数を 1つだけ取ります。値
コンストラクタは 3つの引数を取りますが、それは別の話です。
では、作ったベクトルで遊んでみましょう。

ghci> Vector 3 5 8 ‘vplus‘ Vector 9 2 8
Vector 12 7 16
ghci> Vector 3 5 8 ‘vplus‘ Vector 9 2 8 ‘vplus‘ Vector 0 2 3
Vector 12 9 19
ghci> Vector 3 9 7 ‘vmult‘ 10
Vector 30 90 70
ghci> Vector 4 9 5 ‘dotProd‘ Vector 9.0 2.0 4.0
74.0
ghci> Vector 2 9 3 ‘vmult‘ (Vector 4 9 5 ‘dotProd‘ Vector 9 2 4)
Vector 148 666 222

oyaji (20170810-501DAE64)

126 第 7章 型や型クラスを自分で作ろう

7.5 インスタンスの自動導出
27ページの「型クラス初級講座」という節では、型クラスは

ある振る舞いを定義するインターフェイスであり、ある型がそ
の振る舞いをサポートしていれば、その型クラスのインスタン
スにできる、ということを学びました。例えば、Int型は Eq型
クラスのインスタンスです。これは、 Eq型クラスは「等値性テ
ストができる物」という振る舞いを定義しているからです。整
数には等値性が定義されていますから、 Int は Eq 型クラスに
属することになります。これが本当に便利なのは、 Eq のイン
ターフェイスとなる、 ==と /=という関数があるからです。あ
る型が Eq型クラスのインスタンスであるなら、その型の値には ==が使えます。
これこそが、 4 == 4と "foo" == "bar"が両方とも型検査を通る仕組みです。

Haskellの型クラスは、Java、Python、C++といった言語の「クラス」と紛
らわしいので、多くのプログラマが引っかかりやすいところです。そういったオ
ブジェクト指向言語でクラスといえば、何らかの動作をするオブジェクトを作る
ための青写真のことです。でも、Haskellのクラスは、データを作る道具ではあ
りません。そうではなく、まずデータ型を作り、それから「このデータには何が
できるだろう？」と考えるのです。もしその型が、等値性をテストできるもので
あれば、 Eq型クラスのインスタンスにします。その型が大小比較できるもので
あれば、 Ord型クラスのインスタンスにします。

Haskellは、特定の型クラスのインスタンス宣言を自動導出（derive）する能
力を備えています。自動導出できる型クラスは Eq、 Ord、 Enum、 Bounded、
Show 、 Read です。自作のデータ型を作るとき、 deriving キーワードを使え
ば、Haskellがこれらの型クラスの文脈での振る舞いを自動導出してくれます。

人間の平等
このデータ型を見てください。

data Person = Person { firstName :: String
, lastName :: String
, age :: Int
}

これは人間を表しています。今、この世に同姓同名で年齢まで一致する人はい
ない、と仮定しましょう。では、二人の人の記録があるとき、その 2つの記録が
同一人物を表しているか判定することは妥当でしょうか？ もちろん、判定でき

oyaji (20170810-501DAE64)

7.5 インスタンスの自動導出 127

てしかるべきです。ですから、この型を Eq型クラスに属させるのは妥当なこと
です。インスタンス宣言は自動導出してもらいましょう。

data Person = Person { firstName :: String
, lastName :: String
, age :: Int
} deriving (Eq)

ある型に Eqを自動導出して ==や /=で比較しようとすると、Haskellはまず
値コンストラクタが一致しているかを調べます（今は 1 つしかありませんが）。
それから、値コンストラクタの中に入っている各フィールドがすべて一致して
いるか、それぞれの組を ==を使って比較します。ただし落とし穴が 1つありま
す。すべてのフィールドの型が、 Eq型クラスのインスタンスでないと自動導出
は使えません。今回の場合は、 Stringと Intはこの条件を満たすからオッケー
ですね。
まずは人物を何人か作ってみましょう。スクリプトに次のように書いてくだ
さい。

mikeD = Person {firstName = "Michael", lastName = "Diamond", age = 43}
adRock = Person {firstName = "Adam", lastName = "Horovitz", age = 41}
mca = Person {firstName = "Adam", lastName = "Yauch", age = 44}

Eqインスタンスを試してみましょう。

ghci> mca == adRock
False
ghci> mikeD == adRock
False
ghci> mikeD == mikeD
True
ghci> mikeD == Person {firstName = "Michael", ⇨

lastName = "Diamond", age = 43}
True

もちろん、今や Personは Eqですから、Eq aという型クラス制約の付いた関
数の aのところならどこにでも使えます。例えば、 elemとか。

ghci> let beastieBoys = [mca, adRock, mikeD]
ghci> mikeD ‘elem‘ beastieBoys
True

読み方を書いてみせてよ
Show と Read はそれぞれ文字列へ変換できるものの型クラス、および文字

列から変換できるものの型クラスです。 Eqのときと同じく、ある型を Showや
Readのインスタンスにしたいなら、その型の値コンストラクタにフィールドが
あれば、それらの型も Showや Readに属している必要があります。

oyaji (20170810-501DAE64)

128 第 7章 型や型クラスを自分で作ろう

では、 Personデータ型を Showと Readにも属させてみましょう。

data Person = Person { firstName :: String
, lastName :: String
, age :: Int
} deriving (Eq, Show, Read)

これで人物の情報をターミナルに出力できます。

ghci> mikeD
Person {firstName = "Michael", lastName = "Diamond", age = 43}
ghci> "mikeD is: " ++ show mikeD
"mikeD is: Person {firstName = \"Michael\", lastName = \"Diamond\",
age = 43}"

もし Personを Showのインスタンスにする前に、人物をターミナルに表示さ
せようとしていたら、Haskellは「人物を文字列で表現する方法が分からない」
と主張し、いうことを聞いてくれなかったでしょう。でも、あらかじめ Showの
インスタンスにしておいたので文句は言われませんでした。

Read は Show のちょうど逆をする型クラスです。ただし、 read 関数を使う
ときは、文字列をどの型へ変換したいのかHaskellに伝えるために、明示的な型
注釈を使う必要があるかもしれないことをお忘れなく。実験のため、人物を表す
文字列をスクリプトに書いておいて、それを GHCiから読み込んでみます。

mysteryDude = "Person { firstName =\"Michael\"" ++
", lastName =\"Diamond\"" ++
", age = 43}"

読みやすいように、文字列は複数行にして書きました。この文字列を readす
るためには、どの型が返ることを期待しているのか、Haskellに伝える必要があ
ります。

ghci> read mysteryDude :: Person
Person {firstName = "Michael", lastName = "Diamond", age = 43}

ただし、Haskellが「これは人物を読み取るべきだな」と型推論できるような
仕方で readの結果を使っている場合には型注釈は不要です。

ghci> read mysteryDude == mikeD
True

多相型も読み取ることができますが、どの型が欲しいか Haskell が推論でき
るだけの情報を与える必要があります。例えば、こんなのを試すとエラーになり
ます。

ghci> read "Just 3" :: Maybe a

oyaji (20170810-501DAE64)

7.5 インスタンスの自動導出 129

これでは型引数 aにどの型が入るのか、Haskellには分かりませんね。でも、
そこは Intにしたいんだよ、と教えてあげると、問題なく動きます。

ghci> read "Just 3" :: Maybe Int
Just 3

順番を守ってください！
順序付け可能な型のための型クラス、 Ord のインスタンスも自動導出できま

す。同じ型の値を 2 つ比較したとき、もし 2 つが異なる値コンストラクタから
作られたものなら、先に定義されているほうが小さいとみなされます。例えば、
Bool は False と True の値を取ります。 Bool を比較すると何が起こるかは、
Boolが以下のように定義されていると考えれば分かります。

data Bool = False | True deriving (Ord)

False値コンストラクタが先に定義されていて、その後で Trueが指定されて
いるので、Ordを自動導出すると、Trueは Falseより大きいのだろうと考えら
れます。

ghci> True ‘compare‘ False
GT
ghci> True > False
True
ghci> True < False
False

2つの値が同じ値コンストラクタでできている場合、フィールドがなければ 2
つは等しいとされます。フィールドがあれば、フィールドどうしが比較され、ど
ちらが大きいか決まります（この場合、フィールドの型もまた Ordに属している
必要があります）。

Maybe aデータ型では、 Nothing値コンストラクタが Just値コンストラク
タの前に定義されているので、 Nothing値は常に Just somethingより小さい
とされます。 somethingがたとえマイナス一億兆万であっても Nothingのほう
が小さいのです。でも、2つの Just値を指定したときは、Haskellは中身を比
較してくれます。

ghci> Nothing < Just 100
True
ghci> Nothing > Just (-49999)
False
ghci> Just 3 ‘compare‘ Just 2
GT
ghci> Just 100 > Just 50
True

oyaji (20170810-501DAE64)

130 第 7章 型や型クラスを自分で作ろう

でも、 Just (*3) > Just (*2) みたいなことはできません。 (*3) や (*2)

は関数の型を持ち、関数は Ordのインスタンスではないからです。

何曜日でもいいよ
代数データ型を使えば列挙型は簡単に作ることができます。その際には Enum

と Bounded型クラスが便利です。こんなデータ型を考えてみてください。

data Day = Monday | Tuesday | Wednesday | Thursday | Friday |
Saturday | Sunday

すべての値コンストラクタがゼロ引数（フィールドを持っていない）なので、
これを Enum型クラスに属させることができます。 Enumは、前者関数と後者関
数を持つ型のための型クラスです。 Day は上限と下限を持つ型のクラスである
Bounded のインスタンスにもできます。ついでに自動導出できるすべての型ク
ラスのインスタンスにしちゃいましょう。

data Day = Monday | Tuesday | Wednesday | Thursday | Friday |
Saturday | Sunday
deriving (Eq, Ord, Show, Read, Bounded, Enum)

では、Day型に何ができるのか見ていきましょう。まず Dayは、Showと Read

のインスタンスですから、その値を文字列にしたり文字列から変換したりでき
ます。

ghci> Wednesday
Wednesday
ghci> show Wednesday
"Wednesday"
ghci> read "Saturday" :: Day
Saturday

また、型クラス Eqと Ordのインスタンスでもあるので、等号や不等号が使え
ます。

ghci> Saturday == Sunday
False
ghci> Saturday == Saturday
True
ghci> Saturday > Friday
True
ghci> Monday ‘compare‘ Wednesday
LT

さらに、 Boundedのインスタンスでもありますから、上限と下限を取ること
ができます。

ghci> minBound :: Day
Monday

oyaji (20170810-501DAE64)

7.6 型シノニム 131

ghci> maxBound :: Day
Sunday

Enumのインスタンスもあるので、昨日の曜日や明日の曜日を知ることができ
るし、範囲を指定してリストを作ることもできます！

ghci> succ Monday
Tuesday
ghci> pred Saturday
Friday
ghci> [Thursday .. Sunday]
[Thursday,Friday,Saturday,Sunday]
ghci> [minBound .. maxBound] :: [Day]
[Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday]

7.6 型シノニム
前にも話したように、[Char]と Stringは同値で、交

換可能です。これは型シノニム（型同義名）を使って実
装されています。
型シノニムそのものは特に何もしません。ある型に別

の名前を与えて、コードやドキュメントを他の人が読
みやすくするだけです。標準ライブラリでの String の
定義は、こんな感じで [Char] の型シノニムになってい
ます。

type String = [Char]

typeというキーワードはちょっと誤解を招きやすいかもしれません。ここで
は既存の型のシノニムが定義されているのであって、新しい型が作られているわ
けではありません（それは dataの役割です）。
英文字列を全部大文字に変える関数 toUpperStringを作るとしたら、その型
宣言はこうできます。

toUpperString :: [Char] -> [Char]

こんな型宣言も使えます。

toUpperString :: String -> String

2つは本質的に同じものですが、後者のほうが読みやすいですね。

oyaji (20170810-501DAE64)

132 第 7章 型や型クラスを自分で作ろう

電話帳をかっこよくしよう
前に Data.Mapモジュールを扱ったとき、電話帳をまずは連想リスト（キー／

値のペアのリスト）で表し、それからMapに変換しました。これが連想リスト
バージョンです。

phoneBook :: [(String, String)]
phoneBook =

[("betty", "555-2938")
,("bonnie", "452-2928")
,("patsy", "493-2928")
,("lucille", "205-2928")
,("wendy", "939-8282")
,("penny", "853-2492")
]

phoneBookの型は [(String, String)]です。この型宣言からは、これが文
字列から文字列への連想リストであることが読み取れますが、それ以上の情報
はありません。型宣言にもっと有益な情報を載せるため、型シノニムを作りま
しょう。

type PhoneBook = [(String,String)]

これで電話帳の型は phoneBook :: PhoneBookになりました。 Stringのシ
ノニムも作りましょう。

type PhoneNumber = String
type Name = String
type PhoneBook = [(Name, PhoneNumber)]

Haskell プログラマは、自分のプログラムの中で使っている文字列について
「ただの文字列じゃなくて実際はこれを表しているんだよ」という情報を伝えた
いとき、 Stringに型シノニムを与えます。
というわけで、名前と電話番号を取って、その名前と電話番号の組が電話帳に

載っているか調べる関数を実装するときにも、何をする関数なのか一目で分かる
かっこいい型宣言を書けるようになりましたよ。

inPhoneBook :: Name -> PhoneNumber -> PhoneBook -> Bool
inPhoneBook name pnumber pbook = (name, pnumber) ‘elem‘ pbook

型シノニムを使わなかったら、この関数の型はこうなっていたでしょう。

inPhoneBook :: String -> String -> [(String, String)] -> Bool

この場合は型シノニムを使った型宣言のほうが理解しやすいですね。しかし、
型シノニムは使いすぎてもいけません。型シノニムを作るのは、自作の関数内で
既存の型が何を表してるかを示すことで型宣言のドキュメントとしての質を高

oyaji (20170810-501DAE64)

7.6 型シノニム 133

めるためか、何度も出てくる長々しい型（ [(String, String)]みたいな）が
自作の関数の文脈では何か特定のものを表している場合に限ります。

型シノニムの多相化
型シノニムも型引数を取るようにできます。例えば、連想リストを表す型を作

りたいけどキーや値の型は特定せず汎用にしておきたい、というのであれば、こ
う書けます。

type AssocList k v = [(k, v)]

これで、連想リストからキーを検索してくれる関数の型を (Eq k) => k ->

 AssocList k v -> Maybe vと書けるようになりました。 AssocListは 2つ
の型を引数に取って、 AssocList Int Stringのような具体型を返す型コンス
トラクタです。
関数を部分適用して新しい関数を作れるのと同じように、型引数を部分適用す
ると新しい型コンストラクタが作れます。関数を呼ぶときに引数の数が足りな
いと、残りの引数を取る新しい関数が返ってくるのでしたね。同じように、型コ
ンストラクタに型引数を一部しか与えないと、残りの型引数を取る型コンストラ
クタが返ってきます。例えば、 Data.Mapを使い、 Intをキーとして何らかの値
を返すMapの型を作りたければ、こうです。

type IntMap v = Map Int v

または、こう。

type IntMap = Map Int

どちらの書き方にしても、 IntMap は引数を 1 つ取る型コンストラクタにな
り、その引数こそが Intが指す値になります。
これを実装するなら、たぶん Data.Map を修飾付きインポートしたくなると
思いますよ。修飾付きインポートをするときは、型コンストラクタの前にもモ
ジュール名をつける必要があります。

type IntMap = Map.Map Int

型コンストラクタと値コンストラクタの違いをちゃんと理解できてますか？
IntMapや AssocListという名の型シノニムを作ったからといって、AssocList

 [(1,2),(4,5),(7,9)] のようなものが作れるようになるわけではありま
せんよ。できるのは、すでにあるものの型を別の名前で呼ぶことだけです。
[(1,2),(3,5),(8,9)] :: AssocList Int Int と書くことはできます。こう
することで、中身の数が Int 型だと推論されます。このリストの型には特別な

oyaji (20170810-501DAE64)

134 第 7章 型や型クラスを自分で作ろう

名前がついてはいますが、整数のペアのリストが使える場所ならどこででも使う
ことができます。

Haskellのソースコードは、値の領域、型の領域などに分かれていると考えら
れます。型の領域に属するのは、データ型や型シノニムの宣言、それから型宣言
や型注釈などに登場する記号 ::の右側、などです。型シノニムや、そのほか型
の領域に属するものは、Haskellの一部である型の領域でしか使えないのです。
AssocList [(1,2),(4,5),(7,9)]は、型の領域に属するべき AssocListを値
の領域で使っているので、文法的に誤りだと言えます。

そこを左に行って、すぐ右へ
型引数を 2つ取るデータ型といえば Either a bもあります。 Eitherの定義

は、だいたいこんな感じです。

data Either a b = Left a | Right b deriving (Eq, Ord, Read, Show)

Either a bには値コンストラクタが 2つあります。 Leftを使うと、Either

の中身は a型になります。 Rightを使ったときは、中身は b型になります。つ
まり、 Either型を使って「2つの型のうちどちらか一方」という値を表せます。
Either a b型の値を受け取り、 Leftと Rightをパターンマッチして、どちら
の型に合致したかに応じて異なる処理をする、という使い方をよくします。

ghci> Right 20
Right 20
ghci> Left "w00t"
Left "w00t"
ghci> :t Right 'a'
Right 'a' :: Either a Char
ghci> :t Left True
Left True :: Either Bool b

この例では、 Left True の型を評価すると Either Bool b という型になっ
ていることが分かります。 Left値コンストラクタで作った値なので、1つ目の
型引数は Boolに決まっていますが、2つ目の型引数は多相のまま残っています。
これは、 Nothingという値に Maybe aという型が付くのと同じ理屈です。
これまでのところ、失敗したかもしれない計算を表現するには Maybe a を

使ってきました。でも、 Maybe aでは足りない状況もあります。 Nothingでは
「何かが失敗した」以上の大した情報を持てないからです。 Data.Mapの lookup

であれば、失敗するのはキーが Map に入ってなかったときだけなので何が起
こったかは明白であり、 Nothingで済みます。
でも、関数がなぜ失敗したのか、どのように失敗したのかを知りたいとき、普
通は Either a b型の返り値を使います。ここで、aは失敗が起こった場合に何

oyaji (20170810-501DAE64)

7.6 型シノニム 135

であるかを伝えてくれる型、 bは成功した計算の型です。したがって、エラーは
Left値コンストラクタを、結果は Right値コンストラクタを使って表します。
例として、生徒の一人一人にロッカーが割り当てられる高校を考えてみましょ
う。それぞれのロッカーには暗証番号が付いています。新しいロッカーの割り
当てが必要な生徒は、ロッカー管理人に欲しいロッカーの番号を伝え、管理人
が暗証番号を渡します。しかし、そのロッカーを誰かがすでに使っている場合、
生徒は新しいロッカーを選び直す必要があります。ロッカー全体を Data.Mapの
Mapで表しましょう。ロッカー番号から、ロッカーが使用中かどうかのフラグ
と、ロッカーの暗証番号へのMapです。

import qualified Data.Map as Map

data LockerState = Taken | Free deriving (Show, Eq)

type Code = String

type LockerMap = Map.Map Int (LockerState, Code)

ロッカーが埋まっているか空いてるかを表す新しいデータ型 LockerStateを
導入しました。また、ロッカーの暗証番号には型シノニム Code を与えました。
さらに、整数から「ロッカーの状態と暗証番号の組」へのMapにも型シノニム
LockerMapを与えました。
続いて、ロッカーを表すMap から暗証番号を検索する関数を作りましょう。
この関数の結果は Either String Code型で表すことにします。この関数が失
敗するパターンは 2 通りあるからです。ロッカーを他の誰かが使っている場合
に暗証番号を伝えるわけにはいきません。それから、ロッカー番号が存在しない
可能性もあります。検索が失敗したときは、単に Stringを返して何が起こった
か説明することにしましょう。

lockerLookup :: Int -> LockerMap -> Either String Code
lockerLookup lockerNumber map = case Map.lookup lockerNumber map of

Nothing -> Left $ "Locker " ++ show lockerNumber
++ " doesn't exist!"

Just (state, code) -> if state /= Taken
then Right code
else Left $ "Locker " ++ show lockerNumber

++ " is already taken!"

まずは普通にMapを lookupします。 lookupが Nothingを返したら、Left

 String 値コンストラクタを使い、「ロッカーがないよ（doesn’t exist）」とい
う返事を返します。ロッカーが見つかった場合は、そのロッカーが使用中かど
うか調べます。使われていれば「もう埋まっているよ（already taken!）」とい
う Left値を返します。空いていれば Right Code値を返して、生徒さんに正し

oyaji (20170810-501DAE64)

136 第 7章 型や型クラスを自分で作ろう

い暗証番号を伝えます。これ、実は Right String なんですが（もっというと
Right [Char] ですが）、ドキュメントを充実させるために型シノニム Code を
作ったのでしたね。
次のようなMapがあったとしましょう。

lockers :: LockerMap
lockers = Map.fromList

[(100,(Taken, "ZD39I"))
,(101,(Free, "JAH3I"))
,(103,(Free, "IQSA9"))
,(105,(Free, "QOTSA"))
,(109,(Taken, "893JJ"))
,(110,(Taken, "99292"))
]

ロッカーを検索してみます。

ghci> lockerLookup 101 lockers
Right "JAH3I"
ghci> lockerLookup 100 lockers
Left "Locker 100 is already taken!"
ghci> lockerLookup 102 lockers
Left "Locker number 102 doesn't exist!"
ghci> lockerLookup 110 lockers
Left "Locker 110 is already taken!"
ghci> lockerLookup 105 lockers
Right "QOTSA"

結果を表すのに Maybe a を使うという手もありましたが、そうしていたら
ロッカーの取得に失敗しても原因が分からなかったでしょう。でも、今は関数の
返り値の型が失敗の情報を伝えられるようになっています。

7.7 再帰的なデータ構造
すでに見たように、代数データ型の値コンストラク
タは複数のフィールドを持つこともできるし、フィー
ルドを持たないこともできます。そして各フィール
ドの型は具体型である必要があります。それなら、
フィールドに持つ型は自分自身でもかまわないって
ことですね！ つまり、再帰的なデータ型（ある型の
値の一部にまた同じ型の値が入っていて、そのまた
一部にまたまた同じ型の値が入っていて、……とい
うデータ型）が作れるってことです。

[5] というリストで考えてみましょう。これは実
は 5:[] の構文糖衣です。 : の左辺には値が 1 つあ

oyaji (20170810-501DAE64)

7.7 再帰的なデータ構造 137

ります。右辺にはリストがあります。今の場合は空リストですね。では、 [4,5]

というリストはどうでしょう？ 構文糖衣を脱がすと、こいつは 4:(5:[])です。
先頭の :を見ると、やっぱり左辺には値が 1つあり、右辺にはリスト (5:[])が
あります。 3:(4:(5:6:[])) のような長いリストも仕組みは同じです。この式
は、 :は右結合であることを使って 3:4:5:6:[]とも書けますし、構文糖衣を使
えば [3,4,5,6]とも書けます。
リストは、「空リスト」または「要素とリスト（空でもよい）を :で結合した

もの」のいずれかの値を取るデータ構造です。
では、代数データ型を使って独自のリスト型を実装してみましょう！

data List a = Empty | Cons a (List a) deriving (Show, Read, Eq, Ord)

この型は確かにリストの定義を満たしています。 List は空リストであるか、
headとなる値とリストの結合であるかのいずれかです。これが分かりにくいと
いう人は、レコード構文で考えると分かりやすいかもしれません。

data List a = Empty | Cons { listhead :: a, listTail :: List a}
deriving (Show, Read, Eq, Ord)

ここに出てくる Cons コンストラクタも分かりにくいかもですね。ぶっちゃ
け、 Consというのは :を言い換えたものです。Haskell標準のリストにおける
:も、値とリストを取ってリストを返す値コンストラクタなのです。別の言い方
をすると、:には a型と List a型の 2つのフィールドがある、ということです。

ghci> Empty
Empty
ghci> 5 ‘Cons‘ Empty
Cons 5 Empty
ghci> 4 ‘Cons‘ (5 ‘Cons‘ Empty)
Cons 4 (Cons 5 Empty)
ghci> 3 ‘Cons‘ (4 ‘Cons‘ (5 ‘Cons‘ Empty))
Cons 3 (Cons 4 (Cons 5 Empty))

: との類似を明らかにするため、 Cons コンストラクタを中置記法で呼び出
しています。 Empty は [] に対応し、例えば 4 `Cons` (5 `Cons` Empty) は
4:(5:[])にあたります。

リストの改善
記号文字だけを使って関数に名前をつけると、自動的に中置関数になります。

値コンストラクタもデータ型を返す関数なので、同じルールに従います。ただし
1つだけ制限があります。中置関数にする場合、値コンストラクタの名前はコロ
ンで始まる必要があります。これを見てください。

oyaji (20170810-501DAE64)

138 第 7章 型や型クラスを自分で作ろう

infixr 5 :-:
data List a = Empty | a :-: (List a) deriving (Show, Read, Eq, Ord)

まず、新しい構文要素に注目してください。データ宣言の前の行にある結合
性宣言です。関数を演算子として定義した場合、その結合性（fixity）を宣言で
きます。結合性宣言は必須ではありません。結合性宣言では、演算子の結合順
位や、左結合なのか右結合なのかを指定します。例えば、 * 演算子の結合性は
infixl 7 *で、 +演算子の結合性は infixl 6です。これは、 *も +も左結
合（ 4 * 3 * 2 が (4 * 3) * 2と等しい）だけど *は +より強く結合するこ
とを意味します。結合性宣言の数字が大きいからです。つまり、 5 + 4 * 3は
5 + (4 * 3) と同じ意味になります†3。
結合性宣言を除くと、Cons a (List a)を a :-: (List a)に書き換えただ
けです。これでリスト型に属するリストをこう書けます。

ghci> 3 :-: 4 :-: 5 :-: Empty
3 :-: (4 :-: (5 :-: Empty))
ghci> let a = 3 :-: 4 :-: 5 :-: Empty
ghci> 100 :-: a
100 :-: (3 :-: (4 :-: (5 :-: Empty)))

次に、2つのリストを結合する関数を作りましょう。標準のリストにおける ++

の定義はこうなっています。

infixr 5 ++
(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

このコードを僕らのリストにも流用しましょう。 ^++という関数を作ります。

infixr 5 ^++
(^++) :: List a -> List a -> List a
Empty ^++ ys = ys
(x :-: xs) ^++ ys = x :-: (xs ^++ ys)

試してみましょう。

ghci> let a = 3 :-: 4 :-: 5 :-: Empty
ghci> let b = 6 :-: 7 :-: Empty
ghci> a ^++ b
3 :-: (4 :-: (5 :-: (6 :-: (7 :-: Empty))))

必要とあらば、標準リストを扱う関数を全部、僕らのリスト型に移植すること
も可能です。

†3 ［訳注］ちなみに、結合性宣言を省略した演算子はすべて infixl 9になります。 `で演算子化した関数
に対しても結合性を宣言でき、省略した場合は同様に infixl 9になります。

oyaji (20170810-501DAE64)

7.7 再帰的なデータ構造 139

さりげなく (x :-: xs) というパターンマッチを使っていることに注目して
ください。これが可能なのは、パターンマッチとは値コンストラクタをマッチさ
せることにほかならないからです。 :-: は、僕らが作ったリストの値コンスト
ラクタであり、:はHaskell組み込みのリストの値コンストラクタなので、どち
らも当然パターンマッチできます。 []がパターンマッチできるのも同じ理由か
らです。パターンマッチは値コンストラクタであれば何に対してでも使えるの
で、通常の前置コンストラクタに加えて 8や 'a'といったものもパターンマッ
チできます。これらは数値型や文字型の値コンストラクタだからです。

木を植えよう
Haskellの再帰的データ構造にもっと慣れるために、二分探索木を実装してみ

ましょう。
二分探索木では、1つの要素が 2つの子要素へのポインタを持ちます。一方は

左の子で、もう一方は右の子です。左の子は親より小さく、右の子は親より大き
いようにしておきます。それぞれの子要素は、さらに 2つ（あるいは 1つ、また
は 0個）の要素を持ちます。結果として、各要素は 2つ以下の部分木を持つこと
になります。
二分探索木がすごいのは、例えば 5と

いう要素の左部分木の全要素は 5より小
さいことが保証されているところです。
右部分木の要素は、すべて 5より大きく
なります。ですから、この木に 8が含ま
れているか調べたければ、5 から探索を
始め、8 は 5 より大きいので、右に行き
ます。そこが 7なので、また右に行きま
す。すると、あっ！ たったの 3歩で探しものが見つかりました！ これが普通の
リスト（あるいは、ちっとも平衡してない木）だったら、8が含まれているか調
べるのに 7歩かかったことでしょう。

NOTE Data.Setや Data.Mapが提供する Setや Mapも木構造を使って実装されています
が、ただの二分探索木ではなく、平衡二分探索木を使っています。木構造の平衡と
は、左右の要素の深さがだいたい等しくなっていることを指します。平衡木の探索は
普通の木より速くなります。が、ここでは通常の二分探索木を実装することにしま
しょう。

木構造とは、空の木、もしくは何らかの値と 2つの木を含む要素からなる構造
です。それって代数データ型で表してくれといわんばかりの構造ですね！

oyaji (20170810-501DAE64)

140 第 7章 型や型クラスを自分で作ろう

data Tree a = EmptyTree | Node a (Tree a) (Tree a) deriving (Show)

手作業で木を作る代わりに、木と要素を取って要素を木に挿入する関数を作り
ましょう。まず、新しい値をルートの要素と比較します。その値がルートより小
さければ左に、大きければ右に行きます。空の木に辿り着くまで同じことを繰り
返します。空の木が見つかったなら、そこに新しい値を保持するノードを追加し
ます。

C のような言語なら、このような操作はポインタや値の更新を使って書くで
しょう。Haskellでは、木を直接更新できないので、左右どちらに行くのか決め
るたびに新しい部分木を作っていく必要があります。最終的に挿入関数は新しい
木全体を作って返します。Haskellにはポインタという概念はなく、値しかない
からです。したがって、これから作る挿入関数の型は a -> Tree a -> Tree a

みたいになります。これは、ある要素とある木を取って、要素が挿入された新し
い木を返す関数です。こう言うと効率が悪いように聞こえるかもしれませんが、
Haskellには古い木と新しい木の部分構造のほとんどを共有する仕組みが備わっ
ているので心配無用です。
これが木を作るための 2つの関数です。

singleton :: a -> Tree a
singleton x = Node x EmptyTree EmptyTree

treeInsert :: (Ord a) => a -> Tree a -> Tree a
treeInsert x EmptyTree = singleton x
treeInsert x (Node a left right)

| x == a = Node x left right
| x < a = Node a (treeInsert x left) right
| x > a = Node a left (treeInsert x right)

singletonは、要素が 1つしかない木を作るための補助関数です。ルートに
何かが入っていて左右の部分木は空であるようなノードを手軽に作れるように
定義しただけです。
要素 xを木に挿入するための関数は treeInsertです。まずは、再帰の基底部

をパターンマッチで表現しています。挿入先が空の木である場合は、目的地に辿
り着いたということなので、xを唯一の要素として持つ木を挿入します。挿入先
が空の木でない場合はちょっと調査が必要です。まず、新しい要素とルート要素
が等しければ、すでにその要素は挿入されているということなので、元の木をそ
のまま返します。新しい要素のほうが小さければ、「ルートの値と右部分木は元
のままで、新しい要素が挿入された左部分木を持つ」木を返します。新しい要素
のほうが大きかった場合は、新しい要素を右部分木に挿入した木を同様にして返
します。
では次に、ある要素が木に属しているか判定する関数を作りましょう。

oyaji (20170810-501DAE64)

7.7 再帰的なデータ構造 141

treeElem :: (Ord a) => a -> Tree a -> Bool
treeElem x EmptyTree = False
treeElem x (Node a left right)

| x == a = True
| x < a = treeElem x left
| x > a = treeElem x right

まずは再帰の基底部を定義します。目の前にあるのが空の木なら、要素がそこ
にないことは確実です。これって、リストの中から要素を探す場合の基底部に
そっくりですよね。空じゃない木から探す場合は調査が必要です。ルート要素
が探しているものと等しければ大成功！ 等しくなかったら、どうしましょう？
今こそ、左部分木のすべての要素はルートより小さいという情報を活用するとき
です！ 探している値がルート値より小さければ左部分木を調べ、大きければ右
部分木を調べます。
それでは木で遊びましょう！ 手作業で作るのは面倒だからやめて（やろうと
思えばできますが）、畳み込みを使ってリストから木を作りましょう。リストを
1要素ずつ辿って値を返す操作はたいがい畳み込みで実装できるってこと、覚え
ておいてください！ 空の木から始め、リストを右から辿ってアキュムレータ木
に要素を追加していきましょう。

ghci> let nums = [8,6,4,1,7,3,5]
ghci> let numsTree = foldr treeInsert EmptyTree nums
ghci> numsTree
Node 5

(Node 3
(Node 1 EmptyTree EmptyTree)
(Node 4 EmptyTree EmptyTree)

)
(Node 7

(Node 6 EmptyTree EmptyTree)
(Node 8 EmptyTree EmptyTree)

)

NOTE このコードを GHCiで走らすと、 numsTreeの結果は 1行で表示されるはずですが、
ここでは複数行に分けて書いています。さもないとページをはみ出してしまいますか
らね！

この foldrの畳み込みでは、 treeInsert （リストの要素と木を取って新し
い木を作る）が 2 引数関数であり、 EmptyTree が初期のアキュムレータです。
numsは、もちろん、畳み込み対象のリストです。
コンソールに表示される木は読みやすいものではありませんが、それでも何と
なく構造は分かります。ルートノードはどうやら 5のようです。2つの部分木を
持っています。それぞれのルートノードは 3と 7です。
ある値が木に含まれているかも調べられます。

oyaji (20170810-501DAE64)

142 第 7章 型や型クラスを自分で作ろう

ghci> 8 ‘treeElem‘ numsTree
True
ghci> 100 ‘treeElem‘ numsTree
False
ghci> 1 ‘treeElem‘ numsTree
True
ghci> 10 ‘treeElem‘ numsTree
False

ご覧のとおり、Haskellの代数データ型はとってもパワフルでかっこいい概念
です。真理値や曜日の列挙型を手始めに、マジで何でも作れるんです！

7.8 型クラス 中級講座
ここまで、Haskellに標準で付いてくる型クラス

や、それらにどの型が属しているのかを学んでき
ました。また、Haskellに自動導出してもらうこと
で独自の型を標準型クラスのインスタンスにする
方法も学びました。この節では、独自の型クラスを
作り、そのインスタンスを手動で作る方法を学び
ます。
型クラスについて軽く復習しておきましょう。型

クラスはインターフェイスのようなものです。型ク
ラスは、特定の振る舞い（等値性判定だとか、順序
の比較だとか、列挙だとか）を定義します。定義さ
れたとおりに振る舞うことができる型は、その型ク
ラスのインスタンスにされます。型クラスの振る舞
いは、型クラス関数を定義することで得られます。
型宣言だけして実装は後回しにしてもかまいませ
ん。というわけで、ある型 Tがある型クラス Cのイ
ンスタンスであるとは、型クラス Cが定義する関数
（メソッド）たちを型 Tに対して使える、というこ
とを意味します。

NOTE 再確認ですが、「型クラス」は Javaや Pythonのような言語に出てくる「クラス」と
は何の関係もありません。混乱しちゃう人が多いんで、手続き型言語のクラスについ
て知っていることは今すぐ全部忘れてほしいな！

oyaji (20170810-501DAE64)

7.8 型クラス中級講座 143

Eq型クラスの内部
Eq型クラスを例に取りましょう。 Eqは等値性判定ができる値の型クラスで

したね。 Eqは ==と /=という関数（メソッド）を定義しているのでした。今、
Carという型があって、2つの自動車を等値関数 ==で比較することに意味があ
るのなら、 Carを Eqのインスタンスにするのが理にかなっています。
これが標準ライブラリにおける Eqの定義です。

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool
x == y = not (x /= y)
x /= y = not (x == y)

うおあ！ 何か変な文法とキーワードが出てきました！
まず、 class Eq a whereは Eqという名の新しい型クラスの定義が始まるこ
とを意味します。 aは型変数で、将来 Eqのインスタンスとなるであろう型を表
します。（ちなみに、名前が aである必要もなく、1文字である必要もありませ
ん。小文字から始まっていればよろしい。）
次に、関数がいくつか定義されています。ただし、関数定義の実体を与えなく
てもかまいません。必須なのは型宣言だけです。ここでは、 Eqの定義する関数
の実体が実装されています（デフォルト実装と呼びます）。相互再帰という形で。
そのソースを読むと、「 Eqに属する型を持つ 2つの値は、それらが互いに異なら
ないならば等しく、互いに等しくないならば異なっている。」と書いてあります。
こんなのが一体何の役に立つのか、すぐに分かりますよ。
型クラス定義に含まれる関数には、最終的にちょっと特別な型が付きます。

例えば、 class Eq a where と宣言して、それからクラスの中で (==) :: a

-> a -> Boolみたいな型宣言をしたとします。後でその関数の型を調べると、
(Eq a) => a -> a -> Bool という型になっているでしょう。

交通信号データ型
こうして作ったクラスですが、これで何ができるでしょう？ 型をこのクラス

のインスタンスにして、クラスの便利な機能を使うことができます。例えばこの
型を見てください。

data TrafficLight = Red | Yellow | Green

これは交通信号の状態を定義する型です。ご覧のとおり、自動導出は使ってい
ません。これは、インスタンスを手で書いてみることが目的だからです。これが
Eqのインスタンスの作り方です。

oyaji (20170810-501DAE64)

144 第 7章 型や型クラスを自分で作ろう

instance Eq TrafficLight where
Red == Red = True
Green == Green = True
Yellow == Yellow = True
_ == _ = False

instance キーワードを使ってインスタンスを作りました。そう、新しい
型クラスを定義するのが class で、型を型クラスのインスタンスにするのが
instanceなのです。 Eqを定義したときには、 class Eq a whereと書き、 a

は将来インスタンスになり得るあらゆる型の 1 つを表しているんだよと言いま
した。ここで、その言葉の意味が明らかになりましたね。なぜなら、インスタン
スを作るにあたり instance Eq TrafficLight whereと書いているからです。
クラス定義の a がまさに実際の型で置き換えられています。
さて、クラスを宣言したときには、 ==を定義するのに /=を使い、逆に /=を

定義するのにも ==を使っていました。そのため、インスタンス宣言ではどちら
か一方だけを上書きすればよいことになります。これは、型クラスの最小完全
定義（minimal complete definition）と呼ばれる概念です。インスタンスにな
ろうとする型をクラスの宣伝文句のとおりに振る舞わせるために、最低限定義
する必要のある関数たちがあるということです。 Eqの最小完全定義を満たすに
は、 ==か /=のいずれかを上書きする必要があります。もし Eqの定義がこれだ
けだったら、

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool

Eq のインスタンスを作るには、両方の関数を定義する必要があったでしょう。
Haskellには、この 2つの関数の間に何か関係があるなんて分かりませんから。
この場合の最小完全定義は ==と /=の両方ということになったでしょう。
見てのとおり、ここでは単純なパターンマッチを使って ==のほうを定義しま

した。2つの信号が等しくないケースはもっといろいろあるので、まず等しい場
合をすべて指定し、最後に必ず合致するパターンを置いて「以上の組み合わせに
当てはまらない場合は、等しくないとする」と言ったのです。

Showのインスタンスにするのも手動でやってみましょう。 Showの最小完全
定義を満たすには、値を取って文字列に変える show関数を定義すれば十分です。

instance Show TrafficLight where
show Red = "Red light"
show Yellow = "Yellow light"
show Green = "Green light"

またしてもパターンマッチを使って実装しました。実際にどう動くか使って
みましょう。

oyaji (20170810-501DAE64)

7.8 型クラス中級講座 145

ghci> Red == Red
True
ghci> Red == Yellow
False
ghci> Red ‘elem‘ [Red, Yellow, Green]
True
ghci> [Red, Yellow, Green]
[Red light,Yellow light,Green light]

Eqは自動導出したとしても同じ効果が得られたでしょう（手動でやったのは
教育目的）。ところが Show の自動導出を使うと、値コンストラクタがそのまま
文字列に変換されて出るだけです。信号が Red lightとかに表示されてほしい
なら、インスタンス宣言を手動で書く必要があります。

サブクラス化
別の型クラスのサブクラスである型クラスを作ることもできます。例えば Num

の型クラス宣言は、全体はちょっと長いですが最初の部分はこんなふうになって
います。

class (Eq a) => Num a where
...

前にも言ったように、型クラス制約を挟める場所というのがいろいろありま
す。この例は、普通に class Num a whereと書くのに似ていますが aが Eqの
インスタンスになっている必要があると言っています。要するに、ある型を Num

のインスタンスにしたかったら、その前に Eqのインスタンスにする必要がある、
と言っているのです。「ある型を数のようなものとしたいなら、等値比較くらい
できないといけない」というのは、うなずける話ですね。このようなとき、 Num

は Eqのサブクラスであるといいます。
サブクラス作りに必要なのはこれだけ。型クラス宣言に型クラス制約を付け

ればいいのです！ こうしておけば、型クラス宣言やインスタンス宣言でメソッ
ドの実体を書くとき、 aという型は Eqに属すると推論できますから、 a型の値
に対して ==が利用できます。

多相型を型クラスのインスタンスに
ところで、 Maybeとかリストといった型は、どうやって型クラスのインスタ

ンスになれるのでしょう？ Maybeが、 TrafficLightのような普通の型と違う
ところは、 Maybeそれ自身は具体型ではないところです。 Maybeは、型引数を
1つ、例えば Charを取って、 Maybe Charという具体型を返す型コンストラク
タです。再び Eq型クラスを見てみましょう。

oyaji (20170810-501DAE64)

146 第 7章 型や型クラスを自分で作ろう

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool
x == y = not (x /= y)
x /= y = not (x == y)

型宣言を見ると、 a は具体型として使われていることが分かります。なぜな
ら、関数に表れる型はすべて具体型である必要があるからです。ご存知のとお
り、a -> Maybeという型の関数は決して作れません。が、a -> Maybe aとい
う型なら、あるいは Maybe Int -> Maybe String という型の関数なら作れま
す。このような理由から、次のようなインスタンス宣言は不可能なのです。

instance Eq Maybe where
...

aには具体型が入りますが、 Maybeは違います。 Maybeは型引数を 1つ取っ
て具体型を生み出す型コンストラクタなのです。
では、Maybeが型引数に取り得るすべての型ごとにインスタンス宣言をいちい
ち書いていく必要があるのでしょうか？ だとしたら、とても退屈な作業が待っ
ています。 instance Eq (Maybe Int) where、instance Eq (Maybe Char)

 whereのようにすべての型に対してインスタンスを作っていたら、きりがあり
ません。そのため、型引数を単に変数として残すことが許されています。

instance Eq (Maybe m) where
Just x == Just y = x == y
Nothing == Nothing = True
_ == _ = False

これは、「 Maybe somethingのような格好をしている型はまとめて Eqのイン
スタンスにしたい」と言っているようなものです。実は型変数名は小文字で始
まっていさえすれば何でもよく、 (Maybe something)と書いても文法的には正
しいのですが、ここでは型変数の名前は 1 文字という Haskell の流儀に従って
おきましょう。
ここでは (Maybe m)が class Eq a whereという決まり文句における aの役

割を果たしています。 Maybe は具体型ではありませんが、 Maybe m は具体型
です。 Maybe の型引数に m という型変数を与えることで、「任意の m に対して
Maybe m という姿をとる型を Eq のインスタンスにしたい」と宣言しているの
です。
ただし、これには 1つだけ問題があります。気づきましたか？ Maybeの中身
に == を使いましたよね。でも、 Maybeの中身が Eqとして使える保証はどこに
もないはずです！ 何が必要か、もうお分かりですね。そう、型 mに対する型ク
ラス制約が必要です！ そこで、インスタンス宣言をこう書き換えるわけです。

oyaji (20170810-501DAE64)

7.8 型クラス中級講座 147

instance (Eq m) => Eq (Maybe m) where
Just x == Just y = x == y
Nothing == Nothing = True
_ == _ = False

このインスタンス宣言なら、 Maybe mの形をしている型をすべて Eqに属する
ようにしたい、ただし m （ Maybe の中身）も Eq に属している型に限る、と伝
えることができます。実はこれ、Haskellの自動導出がやってくれることと同じ
です。
ほとんどの場合、型クラス宣言での型クラス制約を使うのは、ある型クラスを
別の型クラスのサブクラスにする場合で、インスタンス宣言での型クラス制約を
使うのは、型の中身に対する必要条件を記述する場合です。例えば、ここでは
Maybeの中身が型クラス Eqに属していることを要求しました。
ある型クラスのメンバ関数の型宣言において、インスタンス型が具体型（例え

ば a -> a -> Bool の a ）として使われているなら、その型クラスのインスタ
ンスを宣言するにあたって、型コンストラクタに必要な数の引数を与えて、括弧
で囲み、具体型を仕立てなければなりません。
これからインスタンスにしようとしている型はクラス宣言における型変数の位
置を占める、と考えてください。クラス宣言 class Eq a whereにおける aは、
インスタンスを作ると実際の型で置き換えられます。ですから、頭の中でその型
を関数型宣言に代入してみてください。このような型宣言は意味を成しません。

(==) :: Maybe -> Maybe -> Bool

でも、これなら大丈夫。

(==) :: (Eq m) => Maybe m -> Maybe m -> Bool

ちょっと考えたら分かります。 ==は、どんなインスタンスを作ろうと、常に
(==) :: (Eq a) => a -> a -> Boolという型を持つものですから。
それからもう 1つ。型クラスのインスタンスが何者かを知りたければ、GHCi
で :info YourTypeClassと打ってください†4。例えば、 :info Numと打てば、
型クラス Numが定義している関数、および Numに属する型のリストが表示され
ます。 :infoは型や型コンストラクタにも使えます。例えば :info Maybeとす
れば、 Maybeがインスタンスとなっている型クラスの情報がすべて表示されま
す。例を示します。

†4 ［訳注］省略形の :iも使えます。

oyaji (20170810-501DAE64)

148 第 7章 型や型クラスを自分で作ろう

ghci> :info Maybe
data Maybe a = Nothing | Just a -- Defined in Data.Maybe
instance (Eq a) => Eq (Maybe a) -- Defined in Data.Maybe
instance Monad Maybe -- Defined in Data.Maybe
instance Functor Maybe -- Defined in Data.Maybe
instance (Ord a) => Ord (Maybe a) -- Defined in Data.Maybe
instance (Read a) => Read (Maybe a) -- Defined in GHC.Read
instance (Show a) => Show (Maybe a) -- Defined in GHC.Show

7.9 YesとNoの型クラス
JavaScriptをはじめ、いくつかの弱く型付けされた言語では、 if式の中にほ

とんど何でも書くことができます。例えば、JavaScript ではこんなことができ
ます。

if (0) alert("YEAH!") else alert("NO!")

こんなことや、

if ("") alert ("YEAH!") else alert("NO!")

こんなことも。

if (false) alert("YEAH!") else alert("NO!")

上のコードはすべて NO!というアラートを表示します。
一方、JavaScriptでは空でない文字列はすべて true値と解釈されるため、以

下のコードは YEAH!というアラートを出します。

if ("WHAT") alert ("YEAH!") else alert("NO!")

真理値の意味論が必要なところでは厳密に Bool型を使うのがHaskellの流儀
ですが、JavaScript的な振る舞いを実装してみるのも面白そうですよね！

class YesNo a where
yesno :: a -> Bool

いたって単純です。 YesNo 型クラスはメソッドを 1 つだけ定義しています。
その関数は、「真理値の概念を何らかの形で含むとみなせる型」の値を取り、そ
れが trueであるか否かを返します。関数の中での aの使われ方からして、 aは
具体型でないとダメです。
では、こいつのインスタンスを定義していきましょう。数に関しては、 0でな
い数は真理値として解釈した場合は真になり、 0は偽になる、という前提にしま
しょう（JavaScriptと同じ）。

oyaji (20170810-501DAE64)

7.9 Yesと Noの型クラス 149

instance YesNo Int where
yesno 0 = False
yesno _ = True

空リストは noっぽい値で、空でないリストは yesっぽい値です。

instance YesNo [a] where
yesno [] = False
yesno _ = True

型引数 aを導入することで、リストの中身の型について何も想定することなく
リストを具体型にするテクニックに注目です†5。

Bool自身も真偽の概念を含んでいるはずです。どっちが真なのかは明らかで
すね。

instance YesNo Bool where
yesno = id

id って何でしょう？ これは引数を 1 つ取って同じものを返すだけの標準ラ
イブラリ関数です。

Maybe aもインスタンスにしてみましょう。

instance YesNo (Maybe a) where
yesno (Just _) = True
yesno Nothing = False

今回は型クラス制約は不要です。 Maybe

の中身に関しては、Just値ならば trueっぽ
くて、Nothingなら falseっぽいと定義する
ことにしたからです。それでも、 Maybe で
なく (Maybe a) と書く必要はあります。な
にせ Maybe は具体型ではないので、 Maybe

 a -> Boolという型なら何の問題もありま
せんが、 Maybe -> Boolという型の関数は存在を許されません。とはいえ、こ
れで Maybe something型の値は中身の somethingが何であろうとも YesNoの
インスタンスになったわけですから、すごいことです！
そういえば、ずいぶん前に Tree a という二分探索木を表す型を作りました
ね。あれも、空の木は falseっぽくて、空じゃない木は trueっぽいということに
しましょう。

instance YesNo (Tree a) where
yesno EmptyTree = False
yesno _ = True

†5 ［訳注］型名 [a] は [] a とも書けます。ですからこのインスタンス宣言は、後述する Maybe a や
Tree aの宣言文に合わせて、 instance YesNo ([] a) where ...と書くこともできるんですよ。

oyaji (20170810-501DAE64)

150 第 7章 型や型クラスを自分で作ろう

信号機も yes／ no値になれるでしょうか？ もちろんです。信号は、赤なら
止まれ、青なら進めです（黄色ならどうするかって？ ええと、僕は「黄色は走
れ」派ですね。アドレナリン出るし）。

instance YesNo TrafficLight where
yesno Red = False
yesno _ = True

インスタンスが出揃ったのでさっそく遊んでみましょう！

ghci> yesno $ length []
False
ghci> yesno "haha"
True
ghci> yesno ""
False
ghci> yesno $ Just 0
True
ghci> yesno True
True
ghci> yesno EmptyTree
False
ghci> yesno []
False
ghci> yesno [0,0,0]
True
ghci> :t yesno
yesno :: (YesNo a) => a -> Bool

動いてます！
では、 ifの真似をして YesNo値を取る関数を作ってみましょう。

yesnoIf :: (YesNo y) => y -> a -> a -> a
yesnoIf yesnoVal yesResult noResult =

if yesno yesnoVal
then yesResult
else noResult

これは、YesNo値を 1つと、好きな型の値を 2つ取ります。もし yes／ noっ
ぽい値がどちらかというと yesなら 2つの値のうち 1つ目を返し、そうでなけ
れば 2つ目を返します†6。試してみましょう。

ghci> yesnoIf [] "YEAH!" "NO!"
"NO!"
ghci> yesnoIf [2,3,4] "YEAH!" "NO!"
"YEAH!"
ghci> yesnoIf True "YEAH!" "NO!"
"YEAH!"

†6 ［訳注］ yesnoIfがこのように手軽に実装できたのは、Haskellが遅延評価を基本とする言語だからこそ
です。一方、正格評価では、 yesnoIfを呼び出す前に、 yesResultと noResultの両方を評価し終え
る必要があります！

oyaji (20170810-501DAE64)

7.10 Functor型クラス 151

ghci> yesnoIf (Just 500) "YEAH!" "NO!"
"YEAH!"
ghci> yesnoIf Nothing "YEAH!" "NO!"
"NO!"

7.10 Functor型クラス
これまで標準ライブラリの型クラスをいくつも

見てきました。順序が付けられる型のクラス Ord

や、等値判定のできる型のクラス Eq で遊びまし
た。それから Showという、文字列として表示でき
る型のインターフェイスを提供している型クラス
も見ました。文字列をある型の値に変換したいと
きには盟友 Readがいました。今度は、 Functor

（ファンクター）という型クラスを見ていきたい
と思います。 Functor は、全体を写せる（map
over）ものの型クラスです†7。

“map over”と聞いて、Haskellの超頻出イディオムである「リストの map」
とかを思い出しませんか？ あれも何かを写す操作の典型例です。ですから、リ
ストは Functor型クラスに属しています。

Functor型クラスを知りたいと思ったら実装を見るのが一番です！ さっそく
覗いてみましょう。

class Functor f where
fmap :: (a -> b) -> f a -> f b

見てのとおり、 Functor は 1 つの関数 fmap を持っており、デフォルト実装
は提供していません。 fmapは面白い型を持っています。これまでに出てきた型
クラスでは、インスタンスになった型を表す型変数は、 (==) :: (Eq a) => a

 -> a -> Bool における a のようにすべて具体型でした。しかし今度の f は、
具体型（ Int、 Bool、 Maybe Stringといった、実際の値が持てる型）ではな
く、1つの型引数を取る型コンストラクタです。（軽く復習。 Maybe Intは具体
型で、 Maybeは 1つの型を引数に取る型コンストラクタです。）
どうやら fmapは、「ある型 aから別の型 bへの関数」と、「ある型 aに適用さ

れたファンクター値」を取り、「別の型 b のほうに適用されたファンクター値」

†7 ［訳注］ここで写すというのは、「そのままコピーをとる」写真のイメージではなくて、「何か変換を施す」
写像のイメージです。“map over”をどう訳すかはずいぶん悩みましたが、簡単な話なので、なるべく平易
な日本語で訳すことにしました。

oyaji (20170810-501DAE64)

152 第 7章 型や型クラスを自分で作ろう

を返す関数のようです。わけが分からなくても心配無用。例を見ればすぐ分か
ります。
ところで、 fmapの型宣言は何かに似ていると思いませんか？ map関数の型

シグネチャを思い出してください。

map :: (a -> b) -> [a] -> [b]

おや面白い！ map は、「ある型から別の型への関数」と、「ある型のリスト」
を取り、「別の型のリスト」を返す関数のようです。どうやらファンクターの正
体が見えてきましたぞ！ 実は、 mapというのはリスト限定で動作する fmapに
すぎません。リストに対する Functorインスタンス宣言はこうなります。

instance Functor [] where
fmap = map

以上！ †8 instance Functor [a] whereと書いてないのに注目。これは、f

は 1 つの型を取る型コンストラクタだからです。以下の宣言を見ても明らかで
しょう。

fmap :: (a -> b) -> f a -> f b

[a]は任意の型を要素とするリストを表す具体型になっているのに対し、 []

はまだ具体型ではなく、1つの型引数を取って [Int]、[String]、[[String]]

といった型を生み出す型コンストラクタです。
リストにとっての fmapはただの mapであるため、2つの関数をリストに使っ
た結果は一致します。

ghci> fmap (*2) [1..3]
[2,4,6]
ghci> map (*2) [1..3]
[2,4,6]

mapや fmapを空リストに対して使ったら何が起こるでしょう？ ええ、もち
ろん、空リストが返ってきます。これらは、 [a]型の空リストを [b]型の空リ
ストに変える働きをします。

Maybeは Functor だよ、たぶん
ファンクターになれるのは、箱のような働きをする型です。リストというの

は、空だったり、ものがいくつか入っていたりする箱だとみなせますね。リス
トの中身にまた箱が入っていて、その中身も空だったり、さらに別のものが
入っていたりするかもしれません。では、ほかにも箱みたいなものってあるで

†8 ［訳注］ここで Functorのインスタンスと宣言されている []は、空リストのことではなく、リスト型の
型コンストラクタとしての []です。型名 [a]は [] aとも書けることを思い出してください。

oyaji (20170810-501DAE64)

7.10 Functor型クラス 153

しょうか？ 例えば Maybe a がそうです。そう思ってみると、 Maybe とは、何
も入っていなければ Nothing 値になり、何か、例えば "HAHA" が入っていれば
Just "HAHA"という値になる箱のように見えませんか？

Maybeはこんなふうにしてファンクターになっています。

instance Functor Maybe where
fmap f (Just x) = Just (f x)
fmap f Nothing = Nothing

ここでも instance Functor Maybe where と書いていることに注目してく
ださい。 YesNo のときみたいに、 (Maybe m) を使って instance Functor

(Maybe m) whereと書いてはいません。 Functorは具体型ではなく、型コンス
トラクタを要求しているからです。頭の中で、 fを Maybeに置換してみましょ
う。 Maybeに限って言えば fmapは (a -> b) -> Maybe a -> Maybe bになる
ことが分かります。これは正しい。一方、 fを (Maybe m)で置換すると、 fmap

は (a -> b) -> Maybe m a -> Maybe m b になりますが、これは意味が通り
ません。 Maybeは型引数を 1つしか取らないからです。

fmap の実装はいたってシンプルです。もし 2 つ目の引数が空の値を示す
Nothingなら、 Nothingを返します。空の箱を関数で写しても空のままという
わけです。もし 2つ目の引数が空でなく、1つの値が詰まった Just値だったら、
関数を Justの中身に適用します。

ghci> fmap (++ " HEY GUYS IM INSIDE THE JUST") ⇨
(Just "Something serious.")

Just "Something serious. HEY GUYS IM INSIDE THE JUST"
ghci> fmap (++ " HEY GUYS IM INSIDE THE JUST") Nothing
Nothing
ghci> fmap (*2) (Just 200)
Just 400
ghci> fmap (*2) Nothing
Nothing

Treeも Functor の森に
「関数で写せるもの」であるため、 Functorに属する型はほかにもあります。
われらが Tree a型がそうです。木は、複数の値を持たせることも空にすること
もできる箱のようなものですし、 Tree型コンストラクタは引数を 1つだけ取る
からです。 fmapを Tree専用の関数と思って眺めた場合、その型シグネチャは
(a -> b) -> Tree a -> Tree bとなるでしょう。
さて、ここは再帰の使いどころですよ。ある関数で空の木を写すと、空の木が

生じます。一方、空でない木を写すときは、ルート値はその関数を適用したも

oyaji (20170810-501DAE64)

154 第 7章 型や型クラスを自分で作ろう

の、それから左右の部分木は元の部分木が写されたものになるはずです。これが
そのコードです。

instance Functor Tree where
fmap f EmptyTree = EmptyTree
fmap f (Node x left right)

= Node (f x) (fmap f left) (fmap f right)

試してみましょう。

ghci> fmap (*2) EmptyTree
EmptyTree
ghci> fmap (*4) (foldr treeInsert EmptyTree [5,7,3])
Node 20 (Node 12 EmptyTree EmptyTree) (Node 28 EmptyTree EmptyTree)

でも、 Tree a型を二分探索木を実装するのに使っている場合は気をつけて！
二分探索木を任意の関数で写した後の木も二分探索木のままであるという保証
はどこにもありません。ある木が二分探索木とみなせるためには、各ノードにつ
いて、その左部分木の要素はすべてそのノードの要素より小さく、右部分木の要
素は大きくないといけません。でも、例えば negateのような関数で二分探索木
を写すと、左部分木の要素はたちまちルートの要素より大きくなってしまい、二
分探索木だったものはただの二分木になってしまいます。

Either は Functor であるか否か
では、 Either a bはどうでしょう？ これはファンクターにできるでしょう

か？ Functor型クラスは、型引数を 1つだけ取る型コンストラクタを要求して
いますが、 Either は引数を 2 つ取ります。うーん……そうだ！ Either に引
数を 1 つだけ部分適用して、自由引数を 1 つ残した状態にすればいいんじゃな
いでしょうか？
標準ライブラリ、具体的に言うと Control.Monad.Instancesでは、Either a
がファンクターとして次のように定義されています。

instance Functor (Either a) where
fmap f (Right x) = Right (f x)
fmap f (Left x) = Left x

ふむふむ、ただの Eitherではなく Either aがインスタンスにされているこ
とがよく分かりますね。 Either aは 1つの型引数を取る型コンストラクタであ
るのに対し、 Eitherは 2つ取るからです。 fmapがもし Either aに特化して
いたら、その型シグネチャはこうなっていたでしょう。

(b -> c) -> Either a b -> Either a c

なぜなら、上のコードは以下のコードと等価だからです。

oyaji (20170810-501DAE64)

7.11 型を司るもの、種類 155

(b -> c) -> (Either a) b -> (Either a) c

Right値コンストラクタがきた場合には関数が適用されますが、 Left値の場
合には何もしません。なぜでしょう？ Either a b型の定義に戻れば理由は見
て取れます。

data Either a b = Left a | Right b

もし、左と右の両方を同じ関数で写したかったら、 a と b は同じ型である必
要があるでしょう。考えてもみてください。仮に文字列を取って文字列を返す
関数で Either a b を写せと言われたとして、 b は文字列型だけど a は数値型
だったら、もう詰んでますよね。それに、 fmapが Either a bに作用したとき
の型を見ても、2 つ目の引数は変化してもいいけど 1 つ目の引数は不変でない
とまずいことが分かります。そして、1つ目の引数は Left値コンストラクタが
使っていることが分かります。
これは箱の比喩ともうまく合致します。 Rightは中身の入った箱、 Leftは空
の箱のようなもので、どうして空になってしまったのかを表すエラーメッセージ
が箱の側面に書かれているのです。

Data.Mapの関数もファンクター値にできます。Mapもまた値が入っている
（入ってないかも！）箱とみなせるからです。 Map k vの場合、fmapは v -> v'

という関数で、 Map k vを写して Map k v'というMapを返します。

NOTE 'という文字は、変数の名前に使えるように型変数の名前にも使えますが、文法上の
特別な意味はありません。ただ、ある型に似ているが少し異なる型を表す記号として
使うことが多いです。

Map kがどのように Functorのインスタンスになるのか自力で突き止めるこ
とは読者への練習問題とさせていただきましょう！
これまでの例で見たように、型クラスは、Functorのようなめちゃくちゃかっ

こいい高次の概念を表現できます。それから、型を部分適用したり、インスタン
スを作る経験も積みましたね。第 11章では、ファンクターが満たすべき法則に
ついて見ていきます。

7.11 型を司るもの、種類
型コンストラクタは、他の型を引数に取っていずれは具体型になります。この

振る舞いは、関数が値を引数に取って値を生み出すのとよく似ていますね。そ
れに、関数と同じく型コンストラクタも部分適用できます。例えば、 Either

Stringは型引数をあと 1つとって具体型、例えば Either String Int を生み
出す型コンストラクタです。

oyaji (20170810-501DAE64)

156 第 7章 型や型クラスを自分で作ろう

この節では、型が型コンストラクタに適
用されるようすを形式的に定義してみま
す。この節を読み飛ばしても Haskell 魔法
の大冒険は続けることができますが、読めば
Haskellの型システムがどのように機能して
いるのかが分かります。それに、今はまだ何
も分からなくても大丈夫です。

3 、 "YEAH" 、そして takeWhile といっ
た値（そう、関数も受け取ったり渡したりで
きる値です。Haskellではね）は、それぞれ
固有の型を持っています。型とは、値につい
て何らかの推論をするために付いている小
さなラベルです。そして、型にも小さなラベ
ルが付いているんです。その名は種類（kind）。種類は、まあ「型の型」のよう
なものです。奇妙でややこしい話に聞こえますが、実はとてもかっこいい概念な
んです。
種類とはそもそも何者で、何の役に立つのでしょう？ さっそく GHCi の :k

コマンドを使って、型の種類を調べてみましょう。

ghci> :k Int
Int :: *

この *は何でしょう？ これは、具体型を表す記号です。具体型とは型引数を
取らない型のことです。値に付けられる型は具体型だけです。 * を声に出して
読む必要に迫られた場合、僕なら「スター」、あるいは単に「型」と読むでしょう。
では、 Maybeの種類は何でしょうか。

ghci> :k Maybe
Maybe :: * -> *

Maybeは 1つの具体型（例えば Int）を取って具体型（例えば Maybe Int）
を返す型コンストラクタであることが分かります。ちょうど、 Int -> Int と
いえば Int を取って Intを返す関数を指すように、 * -> *は 1つの具体型を
取って 1 つの具体型を返す関数を意味するのです。 Maybe に型引数を与えて、
どんな種類の型ができるか調べてみましょう。

ghci> :k Maybe Int
Maybe Int :: *

予想どおり、 Maybeに型引数を与えると具体型になっていました（これこそ、
* -> * の意味するところです）。 :t isUpper と :t isUpper 'A' を呼び出せ

oyaji (20170810-501DAE64)

7.11 型を司るもの、種類 157

ば、型コンストラクタの種類と関数の型とが対応しているのが分かります（が、
まったく同じというわけではありません。型と種類は違うものです）。 isUpper

関数は Char -> Bool 型を持ち、 isUpper 'A' は Bool という型を持ちます。
一方、両者の種類はどちらも *です。

:tが値の型を調べるコマンドなのと同様、 :kは型の種類を調べるコマンド
です。型は値のラベルであり、種類は型のラベルである、という対応関係がある
わけです。大事なことなので、二度言いましたよ。
では、 Eitherの種類を見てみましょう。

ghci> :k Either
Either :: * -> * -> *

Either は 2 つの具体型を取って具体型を返す関数である、と言っています
ね。これもまた、2つの引数を取って何かを返す関数の型宣言とどこか似ていま
す。型コンストラクタは（関数と同様）カリー化されているので、ご覧のとおり
部分適用できます。

ghci> :k Either String
Either String :: * -> *
ghci> :k Either String Int
Either String Int :: *

Either を Functor 型クラスのインスタンスにしようとしたときは、部分適
用をして Either aの形にする必要がありました。 Functorは型引数を 1つ取
る型を要求しているのに対し、 Eitherは型引数を 2つも取るからです。言い換
えると、 Functor になれる型は種類が * -> * の型なので、 Either を部分適
用して元の * -> * -> *という種類から * -> *という種類に変換する必要が
あったのです。
改めて Functorの定義を見直すと、型変数 fは 1つの具体型を取って具体型

を生み出す型として使われていることが見て取れます。

class Functor f where
fmap :: (a -> b) -> f a -> f b

関数の型宣言で値の型として使われていることから、 f aや f bは具体型で
なければならないことが分かります。そこから、 Functorと友達になりたい型
は * -> *という種類を持つ必要があることが導けます。

oyaji (20170810-501DAE64)

oyaji (20170810-501DAE64)

第8章
入出力

この章では、キーボードからの入力を受け取ったり、画面に何かを表示したり
する方法を学びます。
でもその前に、入出力（I/O）の基本をカバーしておきましょう。s I/Oアクションとは何か？s I/Oアクションがどうやって入出力を可能にするのか？s 実際に I/Oアクションが行われるのはいつか？

I/Oの扱いは、Haskellの関数にできることの制約にかかわる問題なので、そ
の制約をどうやって回避するのかを最初に見ていきます。

8.1 不純なものと純粋なものを分離する
そろそろ Haskell が純粋関数型言語である

ことにも慣れてきたと思います。人間からコ
ンピュータに与えるのは、一連の実行ステップ
ではなく、あるものが何であるかの定義です。
加えて、関数は副作用を持つことを許されま
せん。関数は与えられた引数のみを使って何
らかの結果を返すことしかできません。関数
が同じ引数で 2 回呼び出されたら、必ず同じ
結果が返されます。
このことは、はじめのうちはとても大きな

制限のように思えるかもしれませんが、実際
には素晴らしく優れた性質なのです。命令型
言語では、一見すると数を処理するだけに見

159

oyaji (20170810-501DAE64)

160 第 8章 入出力

える簡単な関数が、処理の片手間にあなたの家に火をつけたり犬を誘拐したりし
ないことを保証できません。例えば、二分探索木を前の章で作りましたが、木そ
のものを変更して要素を挿入したわけではありません。その代わりに、木に新し
い要素を挿入した新しい木を返したのでした。
関数が状態を変更できない、例えばグローバル変数を更新したりできないの

は好ましいことです。なぜなら、プログラムについての推論が容易になるから
です。しかし 1 つ問題があります。もし関数がこの世界の状態を何も変えられ
ないとしたら、計算したものを僕らにどうやって伝えるのでしょうか？ そのた
めには出力デバイス（たいていはモニタ）の状態を変更しなければなりません。
それによって光子が放たれ、僕らの脳に到達し、僕らの脳の状態を変更するの
です。
でも落胆しないで。望みはあります。Haskellは、副作用を持つ関数を扱うた

めの素晴らしく賢いシステムを持っているのです。そのシステムが、プログラム
の純粋（pure）な部分と、キーボードや画面とやり取りするようなすべての汚い
仕事をする不純（impure）な部分とをきっちりと分離してくれます。この 2つ
の部分が隔てられているので、外の世界とやり取りしつつも、依然としてプログ
ラムの純粋な部分を推論したり、純粋だからこそ得られる遅延評価、堅牢性、関
数合成などを利用したりできます。この章ではそのようすを見ていきます。

8.2 Hello, World!
これまでは、作った関数は GHCiにロードして

試していました。標準ライブラリの関数たちも、
同じく GHCi から探検してきました。今ついに
初めて本物の Haskell プログラムを書くときが
やってきました！ イェーイ！ 最初に作るプログ
ラムはもちろん、お馴染み「Hello, World!」です。
鉄板ですね！
初心者の方は、お好みのテキストエディタに次

のコードを叩き込んでください。

main = putStrLn "hello, world"

main を定義しただけです。その中で putStrLn という関数を、 "hello,

world" という引数で呼び出しています。これを helloworld.hs というファイ
ルに保存しましょう。

oyaji (20170810-501DAE64)

8.2 Hello, World! 161

これから今までやらなかったことをします。プログラムをコンパイルして、実
行ファイルを生成するのです！ 端末を開いて helloworld.hs のあるディレク
トリに移動し、次のコマンドを打ち込んでください。

$ ghc --make helloworld

これは、GHCコンパイラを起動してプログラムをコンパイルするコマンドで
す。実行すると、何やら次のようなレポートが表示されるでしょう。

[1 of 1] Compiling Main (helloworld.hs, helloworld.o)
Linking helloworld ...

コンパイルが成功したら、次のように端末にタイプしてプログラムを実行でき
ます。

$./helloworld

NOTE Windowsを使っているなら、 ./helloworldの代わりに helloworld.exeとタイプ
してプログラムを実行してください。

このプログラムは次のようなメッセージを表示します。

hello, world

ほら、コンパイルした初めてのプログラムが端末に何かを表示しましたよ。で
もちょっとこれはありえないくらいつまらないですね！
先ほどのコードを詳しく見ていきましょう。まず、関数 putStrLnの型を見て

みます。

ghci> :t putStrLn
putStrLn :: String -> IO ()
ghci> :t putStrLn "hello, world"
putStrLn "hello, world" :: IO ()

putStrLn の型は次のように読めます。「 putStrLn は文字列を引数に取り、
()（空のタプル。unit型ともいう）を結果とする I/O アクションを返す」†1

I/Oアクションとは、実行されると副作用（入力を読んだり画面やファイルに
何かを書き出したり）を含む動作をして結果を返すような何かです。このことを
「I/Oアクションが結果を生成する」といいます。文字列を端末に表示するアク
ションには実際には意味のある返り値がないので、ダミーの値として ()を使い
ます。

NOTE 空のタプルの値は ()であり、その型もまた ()です。

†1 ［訳注］ putStrLn "hello, world" は、評価されると "hello, world" と表示するのではなく、
「 "hello, world"と表示しろ」という命令書（I/Oアクション）を返します。

oyaji (20170810-501DAE64)

162 第 8章 入出力

では I/Oアクションはいつ実行されるのでしょうか？ さて、ここで mainが
関係してきます。I/Oアクションは、僕らがそれに mainという名前をつけてプ
ログラムを起動すると実行されるのです。

8.3 I/O アクションどうしをまとめる
プログラム全体を単一の I/Oアクションにしないといけないのは、ちょっと

制約に思えます。そこで複数の I/Oアクションを糊付けして 1つにするのに do

構文が使えます。次の例を見てください。

main = do
putStrLn "Hello, what's your name?"
name <- getLine
putStrLn ("Hey " ++ name ++ ", you rock!")

新しい構文です！ しかも命令型のプログラムにかなり似ています。コンパイ
ルして実行すれば、このコードから想像したとおりに動くでしょう。

do と書いてから、あたかも命令型のプログラムを書くように実行ステップ
を書き並べています。それら実行ステップのそれぞれが I/O アクションです。
I/Oアクションを do構文を使ってまとめると、糊付けされた 1つの I/Oアク
ションにできます。こうして得られるアクションの型は IO ()になります。 do

の中の最後の I/Oアクションの型が IO ()だからです。そのため、 mainの型
シグネチャは「 main :: IO 何か」になります。「何か」には具体型が入りま
す。 mainの型宣言は普通、明示しません†2。

3行目の name <- getLineは何でしょうか？「入力から 1行読み込み、それ
を name という名前の変数に格納する」と読めそうです。本当にそうでしょう
か？ では getLineの型を調べてみましょう。

ghci> :t getLine
getLine :: IO String

getLineは Stringを生成する I/Oアクションだと分かります。ユーザが端
末に何か入力するのを待って、それからその何かを文字列として返すということ
なので、なるほど理にかなっています。
では、 name <- getLine とすると何が起こるのでしょう？ このコード片は
次のように読めます。「I/Oアクション getLineを実行して、それからその結果
の値を name に束縛せよ」 getLine は IO String という型を持つので、 name

の型は Stringになります。

†2 ［訳注］ドキュメントのため、トップレベルの定義では型宣言を書くのが一般的です。 mainにも型宣言を
書くことのほうが多いです。

oyaji (20170810-501DAE64)

8.3 I/Oアクションどうしをまとめる 163

I/O アクションは、小さな足が付いた箱
だと考えることができます。実世界に出て
行って、そこで何かを行い（壁に落書きした
りとか）、何か値を持って帰ってくる小さな
箱です。箱がデータを取ってきたとき、それ
を開けて中のデータを手に入れる唯一の方
法が <-です。そして、I/Oアクションから
データを取り出そうとしても、それができる
のは別の I/O アクションの中だけです。以
上が純粋なものと不純なものをきちんと分類する Haskell の方法です。I/Oア
クション getLine は純粋ではありません。2 回実行したときに同じ結果を返す
保証はないからです。

name <- getLineを実行すると、 nameは通常の文字列になります。なぜな
ら、 nameは箱の中にあるものを表しているからです。例えば、名前（普通の文
字列）を引数として受け取り、その名前に基づいた占いの結果（fortune telling）
を返すという、実に複雑な関数が書けます。

main = do
putStrLn "Hello, what's your name?"
name <- getLine
putStrLn $ "Zis is your future: " ++ tellFortune name

tellFortune関数（というか、 nameを渡されるあらゆる関数）は、I/Oに
ついて何も知る必要がありません。これは単なる String -> String の関数な
のです！

I/O アクションのどのへんが普通の値と異なるのか見るために、次のコード
を考えてみましょう。これは正しいでしょうか？

nameTag = "Hello, my name is " ++ getLine

「いいえ」と答えた方はクッキーをどうぞ。「はい」と答えた方にはタバスコの
カクテルを飲んでもらいます（冗談ですよ！）。 ++は両辺に同じ型のリストを要
求するので、これは動作しません。左の引数は String（つまり [Char]）の型を
持ち、右の引数 getLineは IO Stringの型を持ちます。文字列と I/Oアクショ
ンは連結できません。最初に I/O アクションから String 型の値を取り出す必
要があります。それにはどこか別の I/O アクションの中で name <- getLine

のようにするしかありません。
純粋でないデータを扱いたいなら、純粋でない環境の中で行わなければなりま
せん。不純による汚染はゾンビのように拡散していくので、コード中の I/Oの
部分を可能な限り小さく抑えるようにするべきなのです。

oyaji (20170810-501DAE64)

164 第 8章 入出力

実行された I/Oアクションはどれも結果を生成します。そのため、先ほどの
例は次のように書くこともできます。

main = do
foo <- putStrLn "Hello, what's your name?"
name <- getLine
putStrLn ("Hey " ++ name ++ ", you rock!")

しかし、 fooは ()の値しか持たないので、このように書いても意味がありま
せん。最後の putStrLnは束縛を行っていないことに注目してください。 doブ
ロックの最後のアクションでは、最初の 2 つのアクションとは違って名前を束
縛できないのです。なぜそうなのか、正確な話は第 13章でモナドの世界に降り
立ってから見ていくことにしましょう。
最後の行を除いて、doブロックのすべての行に束縛を書いてもかまいません。

putStrLn "BLAH" を _ <- putStrLn ”BLAH”と書いてもいいということです。
でも意味がないので、 putStrLnのような意味のある結果を生成しない I/Oア
クションに対しては束縛を省略します。
こんなことすると何が起こるでしょう？

myLine = getLine

入力から行を読んで、それを myLine に束縛すると思いますか？ いいえ、そ
うはなりません。これは、I/O アクション getLine に対して別の名前 myLine

を与えているだけです。I/Oアクションから値を取り出すには、他の I/Oアク
ションの中で <-を使って名前に束縛するしかありません。

I/Oアクションが実行されるのは、 mainという名前を与えられたとき、ある
いは do ブロックで作った別の大きな I/O アクションの中にあるときです。い
くつかの I/O アクションを糊付けするのにも do ブロックが使えて、その I/O
アクションをまた別の doブロックの中で使うことができて、その I/Oアクショ
ンもまた別の doブロックで使うことができます。それらは、最終的に mainの
中に含まれていれば実行されることになります。
もう 1 つ I/O アクションが実行される場合があります。GHCi に I/O アク
ションを入力して ENTERを押したときです。

ghci> putStrLn "HEEY"
HEEY

単純に数や関数呼び出しを GHCiに入力して ENTER を押した場合も、GHCi
はその結果の値に showを適用して、その結果を putStrLnを使って端末に表示
します。

oyaji (20170810-501DAE64)

8.3 I/Oアクションどうしをまとめる 165

I/Oアクションの中で let を使う
I/Oアクションを do構文を使って糊付けしているときに、 let構文を使って

純粋な値を名前に束縛できます。 <- が I/O を実行してその結果を名前に束縛
するのに対し、 letは I/Oアクションの中で普通の値に名前を与えたいときに
使います。これはリスト内包表記における let構文に似ています。

<-と letによる束縛を両方とも使った I/O アクションを見てみることにし
ましょう。

import Data.Char

main = do
putStrLn "What's your first name?"
firstName <- getLine
putStrLn "What's your last name?"
lastName <- getLine
let bigFirstName = map toUpper firstName

bigLastName = map toUpper lastName
putStrLn $ "hey " ++ bigFirstName ++ " "

++ bigLastName
++ ", how are you?"

do ブロックの中での I/O アクションの並べ方が分かってもらえたでしょ
うか？ let と I/O アクション、それから let の中の名前はどうでしょう？
Haskellではインデントが重要なので、これはいい実例です。

map toUpper firstNameと書いていますが、これにより "John"のような文
字列を、もっとかっこいい "JOHN" のような文字列に変換しています。そうし
て大文字化した文字列を名前に束縛して、それを端末に表示する文字列として
使っています。
いつ <-を使って、いつ let束縛を使えばいいのか、困惑しているかもしれま
せんね。 <-は、I/Oアクションを実行して、その結果に名前を束縛するのに使
います。ところが map toUpper firstNameは I/Oアクションではありません。
純粋な Haskell の式です。というわけで、 <- は I/O アクションの結果に名前
を束縛したいときに使い、 let束縛は純粋な式に名前を束縛するのに使います。
let firstName = getLineのように実行しても、I/Oアクション getLineを
別の名前で呼んだことにしかなりません。それを実行して結果を束縛するには
<-を使う必要があるのです。

逆順に表示する
Haskellにおける入出力の感覚をもっとつかむために、1行ずつ読み込んでは

単語をさかさまにして表示するという動作を繰り返す単純なプログラムを作っ

oyaji (20170810-501DAE64)

166 第 8章 入出力

てみましょう。プログラムに空行を入力したら停止するようにします。これが
そのプログラムです。

main = do
line <- getLine
if null line

then return ()
else do

putStrLn $ reverseWords line
main

reverseWords :: String -> String
reverseWords = unwords . map reverse . words

このプログラムが何をするのか、とりあえず動かしてみましょう。reverse.hs

というファイルに保存し、コンパイルして実行してみます。

$ ghc --make reverse.hs
[1 of 1] Compiling Main (reverse.hs, reverse.o)
Linking reverse ...
$./reverse
clean up on aisle number nine
naelc pu no elsia rebmun enin
the goat of error shines a light upon your life
eht taog fo rorre senihs a thgil nopu ruoy efil
it was all a dream
ti saw lla a maerd

reverseWords関数はごく普通の関数です。 "hey there man"のような文字
列を受け取り、これに words を適用して ["hey","there","man"] のような単
語のリストを生成します。それからそのリストに対して reverse をマップし、
["yeh","ereht","nam"] を受け取り、 unwords で 1 つの文字列に戻します。
最終的な結果は "yeh ereht nam"になります。

mainについてはどうでしょうか？ まず getLineを実行して端末から行を読
み、それに lineという名前をつけます。それから条件式があります。Haskell
ではすべての式が何らかの値を持つので、すべての ifには対応する elseが必
要なのでした。このコードの ifでは、条件が真（この場合は空行が入力された）
なら 1つの I/Oアクションが実行され、真でなければ else以下にある I/Oア
クションが実行されることになります。

else以下には正確に 1つの I/Oアクションがなければならないので、 doブ
ロックを使って 2つの I/Oアクションを 1つに糊付けしています。この部分を
次のように書くこともできます。

else (do
putStrLn $ reverseWords line
main)

oyaji (20170810-501DAE64)

8.3 I/Oアクションどうしをまとめる 167

do ブロックを 1 つの I/O アクションとみなしていることが分かりやすくな
りますが、醜いです。

do ブロックの中では、 getLine で入力した行に reverseWords を適用して
から端末に表示しています。それに続けて、 mainを実行します。これは再帰的
に実行される正しいコードです。なぜなら、 main もまた I/O アクションだか
らです。要するにプログラムの先頭に戻ります。

null lineが Trueなら、 then以下にある return ()というコードが実行
されます。他の言語でサブルーチンや関数から戻るのに returnを使ったことが
あるかもしれません。しかし、Haskellの returnは他の言語にある returnと
はまったく異なるものです。

Haskell（特に I/O アクションの中）での return は、純粋な値から I/O ア
クションを作り出します。I/Oアクションを再び箱で例えると、 returnは値を
受け取り、それを箱の中に入れるものだと考えることができます。作り出された
I/O アクションは実際には何も行いません。単に結果を生成するだけです。ゆ
えに、I/Oの文脈では return "haha"は IO Stringの型を持つでしょう。
純粋な値を何もしない I/Oアクションに変換して、何のありがたみがあるの
でしょうか？ 先ほどのプログラムでは、空の行を入力した場合に実行するため
の何らかの I/Oアクションが必要なのでした。それが return ()と書いて何も
しないハリボテの I/Oアクションを作る理由です。
他の言語と異なり、Haskellの returnには I/Oの doブロックの実行を終わ
らせる働きはありません。例えば、このプログラムは最後の行まで事もなげに実
行されます。

main = do
return ()
return "HAHAHA"
line <- getLine
return "BLAH BLAH BLAH"
return 4
putStrLn line

繰り返しになりますが、どの return も結果を生成する I/O アクションを作
り出し、その結果は名前に束縛されていないので捨てられてしまいます。

returnを <-を使った名前の束縛と組み合わせて使うことができます。

main = do
a <- return "hell"
b <- return "yeah!"
putStrLn $ a ++ " " ++ b

見てのとおり、 returnが <-の反対側にあります。 returnは箱の中に値を
しまい込むものなので、 <- はその箱を受け取り（そしてそれを実行し）、中の

oyaji (20170810-501DAE64)

168 第 8章 入出力

値を取り出して名前に束縛します。でも、これは冗長なコードです。なぜなら、
doブロック中では letを使った束縛が使えるからです。

main = do
let a = "hell"

b = "yeah"
putStrLn $ a ++ " " ++ b

doブロックで I/Oを行うときは、たいてい returnを使うことになります。
というのも、何もしない I/Oアクションを作る必要があったり、 doブロックの
最後のアクションで作り出された結果を I/Oアクションの結果として返したく
ない場合があったりするからです。違う結果を I/Oアクションの返り値にした
いときは、returnを使って望みの結果を生成する I/Oアクションを作り、それ
を doブロックの最後に配置します。

8.4 いくつかの便利なI/O関数
Haskell には便利な関数と I/O アクションがたくさん用意されています。い

くつかの使い方を見ていくことにしましょう。

putStr
putStrは putStrLnとよく似ています。文字列を引数として受け取り、その

文字列を端末に表示する I/Oアクションを返します。しかし putStrLnとは異
なり、 putStrは文字列を表示した後に改行を出力しません。例えば次のコード
を見てください。

main = do
putStr "Hey, "
putStr "I'm "
putStrLn "Andy!"

コンパイルして実行すると次のような出力が得られるでしょう。

Hey, I’m Andy!

putChar
putCharは文字を受け取り、その文字を端末に表示する I/Oアクションを返

す関数です。

main = do
putChar 't'
putChar 'e'
putChar 'h'

oyaji (20170810-501DAE64)

8.4 いくつかの便利な I/O関数 169

putStrは putCharを使って再帰的に定義できます。 putStrの基底部は空の
文字列で、この場合は空の文字列を出力します。要するに、 return ()を使っ
て何もしない I/Oを返します。空でなければ、先頭の文字を putCharで表示し
て、それから残りを再帰的に表示します。

putStr :: String -> IO ()
putStr [] = return ()
putStr (x:xs) = do

putChar x
putStr xs

I/O の中で、純粋なコードと同じように再帰が使えることが分かるでしょう
か。まずは再帰の基底部を定義して、それから残りのケースを考えます。この場
合だと、最初に先頭の文字を出力して、それから残りの文字列を出力します。

print
print は、 Show のインスタンスの型（文字列としてどう表現すればよいか

知っている型という意味）の値を受け取り、それに show を適用して「文字列
化」して、それからその文字列を端末に出力します。基本的にこれは putStrLn

 . showと同じものです。はじめに引数に対して showを呼び出し、その結果を
putStrLnに与えます。これは値を表示する I/Oアクションを返します。

main = do
print True
print 2
print "haha"
print 3.2
print [3,4,3]

これをコンパイルして実行すると次の出力が得られます。

True
2
"haha"
3.2
[3,4,3]

見てのとおり、 printはとても便利な関数です。I/Oアクションが実行され
るのは main の中に入っているか GHCi のプロンプトで評価しようとしたとき
だけ、という話を覚えていますか？ 僕らが GHCiで値（ 3や [1,2,3]）をタイ
プして ENTERを押したとき、その値を端末に表示するのに GHCiが実際に使っ
ているのは printなのです！

ghci> 3
3

oyaji (20170810-501DAE64)

170 第 8章 入出力

ghci> print 3
3
ghci> map (++"!") ["hey","ho","woo"]
["hey!","ho!","woo!"]
ghci> print $ map (++"!") ["hey","ho","woo"]
["hey!","ho!","woo!"]

文字列を表示したいとき、普通は putStrLnを使います。ダブルクオートで囲
まれてほしくないからです。でも、他の型の値を端末に表示するときには print

が一番よく使われます。

when
when 関数は Control.Monad モジュールにある関数です（ import

Control.Monad するとアクセスできます）。この関数の面白いところは、 do

ブロックでは制御構文のように見えるのに実際には普通の関数だというところ
です。

whenは Boolと I/Oアクションを受け取り、Boolの値が Trueの場合には渡
された I/Oと同じものを返します。 Falseだった場合は何もしない return ()

を返します。
次のコードは、入力を受け取り、それが SWORDFISHだったときに限ってその
ままターミナルに出力する小さなプログラムです。

import Control.Monad

main = do
input <- getLine
when (input == "SWORDFISH") $ do

putStrLn input

whenを使わなければこのようにプログラムを書かなければならないでしょう。

main = do
input <- getLine
if (input == "SWORDFISH")

then putStrLn input
else return ()

見てのとおり、 when は条件が満たされたときのみ何らかの I/O アクション
を行いたい場合に便利な関数です。

sequence
sequence関数は、I/Oアクションのリストを受け取り、それらを順に実行す

る I/Oアクション（シーケンス）を返します。この I/Oアクションが生成する

oyaji (20170810-501DAE64)

8.4 いくつかの便利な I/O関数 171

結果は、実行したすべての I/Oアクションの結果からなるリストです。例えば
このようなコードがあったとします。

main = do
a <- getLine
b <- getLine
c <- getLine
print [a,b,c]

これを次のように書くことができます。

main = do
rs <- sequence [getLine, getLine, getLine]
print rs

これら 2 つの結果はまったく同じになります。 sequence [getLine,

getLine, getLine]は getLineを 3回行う I/Oアクションを作ります。この
アクションを名前に束縛したら、結果はすべての結果のリストになります。なの
で、この場合の結果はユーザがプロンプトから入力した 3 つのものからなるリ
ストになるでしょう。

sequenceを使ったよくあるパターンは、リストに対して printや putStrLn

のような関数を mapするときです。 map print [1,2,3,4]は I/Oアクション
を作りません。代わりに I/Oアクションのリストを作ります。意味的には、こ
れは次のように書いたのと同じです。

[print 1, print 2, print 3, print 4]

I/Oのリストを I/Oアクションに変換したいなら、それをシーケンスにしな
いといけません。

ghci> sequence $ map print [1,2,3,4,5]
1
2
3
4
5
[(),(),(),(),()]

出力の最後にある [(),(),(),(),()] は何でしょうか？ GHCi で I/O アク
ションを評価すると、端末にはその結果が表示されます。ただし結果が () の
ときだけは例外です。この例外があるので、 putStrLn "hehe" を評価すると
GHCi は hehe とだけ表示します。 putStrLn "hehe" は () を生成するからで
す。しかし GHCi に getLine を入力した場合には I/O アクションの結果が表
示されます。 getLineの型は IO Stringだからです。

oyaji (20170810-501DAE64)

172 第 8章 入出力

mapM
「リストに対して I/Oアクションを返す関数をマップし、それからシーケンス
にする」という操作は頻出するので、ユーティリティ関数 mapMと mapM_が用意
されています。 mapMは関数とリストを受け取り、リストに対して関数をマップ
して、それからそれをシーケンスにします。 mapM_も同じことをしますが、その
後で結果を捨ててしまいます。I/O アクションの結果が必要ないときは mapM_

を使います。 mapMの使用例を次に示します。

ghci> mapM print [1,2,3]
1
2
3
[(),(),()]

3つのユニットからなるリストは不要なので、こうしたほうがいいでしょう。

ghci> mapM_ print [1,2,3]
1
2
3

forever
forever関数は I/Oアクションを受け取り、その I/Oアクションを永遠に繰

り返す I/O アクションを返します。 Control.Monad で定義されています。次
の小さなプログラムは、無限にユーザからの入力を受け取り、それを大文字化し
て出力し続けます。

import Control.Monad
import Data.Char

main = forever $ do
putStr "Give me some input: "
l <- getLine
putStrLn $ map toUpper l

forM
forM（ Control.Monadにあります）は、 mapMに似ていますが引数の順序が

逆になっています。最初の引数がリストで、2番目がそのリストにマップする関
数です。何の役に立つのでしょう？ ラムダ式と do 記法をうまく組み合わせて
こんな書き方ができるのです。

oyaji (20170810-501DAE64)

8.4 いくつかの便利な I/O関数 173

import Control.Monad

main = do
colors <- forM [1,2,3,4] $ \a -> do

putStrLn $ "Which color do you associate with the number "
++ show a ++ "?"

color <- getLine
return color

putStrLn "The colors that you associate with 1, 2, 3 and 4 are: "
mapM putStrLn colors

これを実行してみると次のような結果が得られます。

Which color do you associate with the number 1?
white
Which color do you associate with the number 2?
blue
Which color do you associate with the number 3?
red
Which color do you associate with the number 4?
orange
The colors that you associate with 1, 2, 3 and 4 are:
white
blue
red
orange

\a -> do ... というラムダ式は、数を受け取り I/O アクションを返す関
数です。 doの最後で return colorを呼んでいることに注目してください。こ
の do ブロックはユーザの選択した色を表す文字列を返すと定義しているので
こうしています。ただ、実際にこう書く必要はありません。 getLineはすでに
選択した色を返していて、それが do ブロックの最後に位置しているからです。
color <- getLineを実行した後で return colorを行うのは、 getLineの結
果をほどいてから再度梱包しているだけなので、単に getLineを呼び出すのと
同じなのです。

forM関数を 2つの引数で呼び出すと、I/Oアクションが生成され、その結果
は colorsに束縛されます。 colorsは文字列を含む普通のリストです。最後に
すべての色を mapM putStrLn colorsを呼んで表示しています。

forM はこんなふうに考えればいいでしょう。「このリストの各要素に対応す
る I/Oアクションを作る。それぞれの I/Oアクションの動作は、アクションを
作るのに使った要素に応じたものにできる。最終的には、これらのアクションが
実行された結果が何かに束縛される。（結果が必要なければ丸ごと捨ててしまう
こともできる）」

forMを使わなくても同じことはできます。しかし forMを使うとコードが読
みやすくなります。 do記法を使った何らかのアクションをマップしてシーケン

oyaji (20170810-501DAE64)

174 第 8章 入出力

スにしたい場合、普通は forMを使います†3。

8.5 I/O アクションおさらい
I/O の基本をざっとおさらいしておきましょう。I/O アクションというのは

値であり、Haskellの他の値とよく似ています。関数の引数として渡すことがで
きて、関数の結果として I/Oアクションを返すことができます。

I/O アクションが特別なのは、 main 関数の中に入っていると（あるいは
GHCiのプロンプトで評価されると）、それが実行されるところです。画面に何
かを表示したり、名曲「ヤケティ・サックス」をスピーカーから再生したりする
のです。またどの I/Oアクションも、実世界から取得してきたものを伝える結
果を生成できます。

†3 ［訳注］ mapMと forMは関数とリスト、どちらの引数を長く書きたいかによって使い分けるのが良いで
しょう。

oyaji (20170810-501DAE64)

第9章
もっと入力、もっと出力

Haskellの入出力の背後に潜むコンセプトを理解したところで、ようやく面白
いことを始められます。この章の話題は、ファイルとのやり取り、乱数生成、コ
マンドライン引数の扱い方などです。チャンネルはそのまま！

9.1 ファイルとストリーム
I/O アクションの仕組みの知識

を手に、Haskellでファイルの読み
書きをしていくことにします。と
その前に、どうすればHaskellでス
トリームデータを簡単に扱えるのか
を見ていきましょう。ストリームと
は、時間をかけてプログラムに出た
り入ったりする連続したデータ片の
ことです。例えば、キーボードから
プログラムに文字を入力するとき、
その文字たちをストリームと考える
ことができます。

入力のリダイレクト
多くの対話型プログラムはキーボードからユーザの入力を受け取ります。し

かし、テキストファイルの内容をプログラムに入力として与えることができれ
ば、さらに便利です。そのために入力のリダイレクトを使います。

Haskellプログラムで入力のリダイレクトができると便利なので、それをどの
ように行うのかを見てみましょう。はじめに、次のような俳句を含む小さなファ

175

oyaji (20170810-501DAE64)

176 第 9章 もっと入力、もっと出力

イル haiku.txtを作ります。

I’m a lil’ teapot
What’s with that airplane food, huh?
It’s so small, tasteless

あちゃー、これはひどい。誰か俳句を教えてくれる人がいたら連絡ください。
気を取り直して、行を読み込んで大文字化して表示を繰り返す小さなプログラ
ムを書きましょう。

import Control.Monad
import Data.Char

main = forever $ do
l <- getLine
putStrLn $ map toUpper l

このプログラムを capslocker.hsとして保存し、コンパイルします。
キーボードから行を入力する代わりに、haiku.txt をプログラムにリダイレ

クトして入力しましょう。入力をリダイレクトするには、プログラム名の後に <

という文字と、それに続けて入力したいファイル名を指定します。やってみま
しょう。

$ ghc --make capslocker
[1 of 1] Compiling Main (capslocker.hs, capslocker.o)
Linking capslocker ...
$./capslocker < haiku.txt
I'M A LIL' TEAPOT
WHAT'S WITH THAT AIRPLANE FOOD, HUH?
IT'S SO SMALL, TASTELESS
capslocker <stdin>: hGetLine: end of file

capslocker に端末から俳句をタイプして、最後に EOF（end of file。
「CTRL-D」†1として入力できる）を入力したときの動作とほとんど同じです。
capslocker を実行して次のように言っているような感じです。「待って、キー
ボードから読まないで。代わりにこのファイルの中身を受け取って！」

入力ストリームから文字列を得る
入力ストリームを扱いやすい普通の文字列にしてくれる I/O アクション

getContents を見ていきましょう。 getContents は、標準入力から EOF 文
字に達するまですべての文字を読み込みます。その型は getContents :: IO

Stringです。 getContentsがイケてるのは遅延 I/Oを行うところです。どう
いうことかというと、foo <- getContentsとしても getContentsは一度に全

†1 ［訳注］Windowsのコマンドプロンプトでは「CTRL-Z」。

oyaji (20170810-501DAE64)

9.1 ファイルとストリーム 177

部の入力をメモリに読み込んで fooに束縛しないのです。そう、 getContents

は遅延するのです！「やーやー、後でちゃんと端末から入力を受け取るよ。それ
が本当に必要になったときに！」
capslocker.hsの例では、 foreverを使って 1行ずつ入力を読み、それを大
文字にして表示していました。 getContentsは I/Oの細かい面倒を見てくれま
す。その一環として、必要なときに必要な分だけ入力を読み込んでくれるのです。
何か入力を受け取り、それを変換して出力するプログラムなら、 getContents

を使って簡潔に書けます。

import Data.Char

main = do
contents <- getContents
putStr $ map toUpper contents

I/Oアクション getContentsを実行して、その結果の文字列に contentsと
いう名前をつけています。それからその文字列を toUpperで写して、その結果
を端末に表示します。忘れないでください。文字列は基本的にはリストなので
処理は遅延されますし、 getContentsは遅延 I/Oなので、大文字化した文字列
を表示する前にすべての中身（コンテンツ）を一度にメモリに読み込んだりはし
ません。必要なときに入力から行を読み込むので、読んだらすぐに大文字化した
文字列を表示します。
試してみましょう。

$./capslocker < haiku.txt
I'M A LIL' TEAPOT
WHAT'S WITH THAT AIRPLANE FOOD, HUH?
IT'S SO SMALL, TASTELESS

正しく動作しています。じゃあ、 capslockerをリダイレクトなしで実行し、
端末から入力をタイプしたらどうなるでしょうか？（プログラムを終了させるに
は「CTRL-D」†2をタイプします。）

$./capslocker
hey ho
HEY HO
lets go
LETS GO

とても素晴らしい！ ご覧のとおり大文字化された文字列が 1行ごとに出力さ
れています。

†2 ［訳注］Windowsのコマンドプロンプトでは「CTRL-Z」。

oyaji (20170810-501DAE64)

178 第 9章 もっと入力、もっと出力

getContentsの結果が contentsに束縛されるとき、それは本当の文字列で
はなく、最終的には文字列に評価されるプロミス（promise）としてメモリ上に
置かれます。 contentsに toUpper をマップするとき、それもまた入力の結果
に関数をマップするというプロミスになります。最終的に putStr が呼ばれる
と、これがさっきのプロミスに対して「やあ、大文字化された行が必要なんだ！」
と言います。そのプロミスはまだ入力の行を何も持っていないので、 contents

に対し「端末からの入力の状況はどうなってる？」と問い合わせます。それで
ようやく getContents は実際に端末から入力して、何か入力をくれといって
きたコードに生成したものを渡すのです。受け取ったコードは渡されたものに
toUpperをマップし、その結果を putStrに渡して、画面に行が出力されます。
さらに続けて putStrは「ヘイ、次の行をくれ！ カモン！」と言います。これが
入力がなくなるまで、つまり EOF文字が入力されるまで繰り返されます。
では、入力を受け取り、10文字より短い行だけを出力するプログラムを作っ

てみましょう。

main = do
contents <- getContents
putStr (shortLinesOnly contents)

shortLinesOnly :: String -> String
shortLinesOnly = unlines . filter (\line -> length line < 10) . lines

プログラム中の I/Oの部分を可能な限り少なくしました。このプログラムは、
何かの入力に基づいて何か出力をするものだと考えられるので、入力のコンテン
ツを読み込み、それに対して関数を走らせ、その結果を出力する、と実装でき
ます。

shortLinesOnly関数は "short\nlooooooong\nbort"のような文字列を受
け取ります。この例では文字列は 3行で、そのうち 2行は短く真ん中の 1行は長
めです。この文字列は、 lines関数を適用すると、文字列のリスト ["short",

"looooooong", "bort"] に変換されます。これに 10文字未満の文字列をフィ
ルタする関数が適用され、 ["short", "bort"] になります。最後に、それに
unlinesを適用し、改行文字で区切られた 1つの文字列、 "short\nbort\n"に
なります。
実行してみましょう。次のテキストを shortlines.txtとして保存します。

i’m short
so am i
i am a loooooooooong line!!!
yeah i’m long so what hahahaha!!!!!!
short line
loooooooooooooooooooooooooooong
short

oyaji (20170810-501DAE64)

9.1 ファイルとストリーム 179

プログラムを shortlinesonly.hsに保存して、コンパイルして実行します。

$ ghc --make shortlinesonly
[1 of 1] Compiling Main (shortlinesonly.hs, shortlinesonly.o)
Linking shortlinesonly ...

次のように shortlines.txtのコンテンツをリダイレクトして試します。

$./shortlinesonly < shortlines.txt
i'm short
so am i
short

短い行だけ端末に表示されているのが分かるでしょう。

入力を変換する
「入力を文字列として受け取り、それを関数で変換し、結果を出力する」とい
うパターンはとてもよく出てくるので、これを簡単に済ませるための interact

という関数があります。 interactは String -> String型の関数を受け取り、
入力にその関数を適用して、返ってきた結果を出力する、という I/Oアクション
を返します。先ほどのプログラムを interactを使って書き換えてみましょう。

main = interact shortLinesOnly

shortLinesOnly :: String -> String
shortLinesOnly = unlines . filter (\line -> length line < 10) . lines

このプログラムは、入力をファイルからリダイレクトしても、キーボードから
一行一行入力しても実行できます。出力はどちらの場合も同じですが、キーボー
ドから入力する場合は capslocker プログラムのときのように入力ごとに出力
が表示されます。
入力を行ごとに読み込み、それが回文かどうかを出力するプログラムを作っ

てみましょう。行を読むのに getLine を使い、それが回文かどうかを出力し、
それから main を呼び出して再帰してもいいですが、 interact を使うともっ
とシンプルに書けます。 interact によって、入力を望みの出力に変換するに
はどうすればいいかだけを考えればよくなります。今回の場合だと、各行を
"palindrome"か "not a palindrome"に置き換えます。

respondPalindromes :: String -> String
respondPalindromes =
unlines .
map (\xs -> if isPal xs then "palindrome" else "not a palindrome") .
lines

isPal :: String -> Bool
isPal xs = xs == reverse xs

oyaji (20170810-501DAE64)

180 第 9章 もっと入力、もっと出力

とても素直に書けています。このプログラムは、最初に次のような文字列を、

"elephant\nABCBA\nwhatever"

このようなリストに変換します。

["elephant", "ABCBA", "whatever"]

それから、リスト全体をラムダ式でマップして結果を得ます。

["not a palindrome", "palindrome", "not a palindrome"]

続いて、 unlines を使って改行文字で区切られた単一の文字列に連結します。
あとは mainの I/Oアクションを作るだけです。

main = interact respondPalindromes

試してみましょう。

$./palindromes
hehe
not a palindrome
ABCBA
palindrome
cookie
not a palindrome

大きい 1つの文字列を別の文字列に変換するプログラムを作ったのに、このプ
ログラムは 1 行ごとに処理するプログラムを書いたかのように動作します。こ
れは Haskell が遅延評価だからです。結果の文字列の最初の行を表示したくて
も、入力の最初の行がまだないので表示できません。プログラムは、入力の最初
の行を取得したらすぐに出力の最初の行を表示します。プログラムから抜け出
すには EOF文字を入力します。
このプログラムにも入力をファイルからリダイレクトできます。次の内容を

words.txtに保存します。

dogaroo
radar
rotor
madam

これをリダイレクトして実行します。

$./palindrome < words.txt
not a palindrome
palindrome
palindrome
palindrome

oyaji (20170810-501DAE64)

9.2 ファイルの読み書き 181

標準入力から単語を入力して実行したときと同じ入力が得られました。ただ
しプログラムはファイルから入力を受け取ったので、入力は端末には現れていま
せん。
遅延 I/Oがどのように動作し、それをどう活用するかを見てきました。プロ

グラムを書くときは、ある入力に対してどんな出力が考えられるかという視点か
ら考えて、その変換をする関数を書くだけです。今出力したいものは入力によっ
て決まるので、遅延 I/Oでは本当に必要になるまで入力を一切消費しません。

9.2 ファイルの読み書き
ここまでは、端末への表示と端末からの読み込みに I/Oを使いました。でも

ファイルの読み書きはどうするのでしょう？ そうですね、ある意味ではファイ
ルの読み書きもしていたと言えます。
端末から読むということは（何か特別な）ファイルから読んでいると考えるこ

ともできます。端末への書き出しも、同様に、ある特別なファイルへの書き出し
だと考えられます。これらの 2つの特別なファイルを stdin および stdout と呼
びます。それぞれ標準入力（standard input）と標準出力（standard output）
を意味します。ファイルへの入出力は、標準入力からの読み込みと標準出力への
書き出しにとても似ています。
まず、マザーグースの一節が書かれた baabaa.txtというファイルを開き、そ

れを端末に表示するだけの簡単なプログラムを書くことから始めましょう。こ
れが baabaa.txtです。

Baa, baa, black sheep,
Have you any wool?
Yes, sir, yes, sir,
Three bags full;

そしてこれがプログラムです。

import System.IO

main = do
handle <- openFile "baabaa.txt" ReadMode
contents <- hGetContents handle
putStr contents
hClose handle

コンパイルして実行すれば、期待した結果が得られます。

oyaji (20170810-501DAE64)

182 第 9章 もっと入力、もっと出力

$./baabaa
Baa, baa, black sheep,
Have you any wool?
Yes, sir, yes, sir,
Three bags full;

1行ずつ見ていきましょう。最初の行は、羊さんに呼びかけています。2行目
で歌い手は、羊に毛を刈る用意はできたか聞いています。3行目では羊が答えて
いて、4行目では 3つの袋がいっぱいになるほどあると言っています。
プログラムのほうも 1 行ずつ見ていきましょう。プログラム全体は、複数の

I/Oアクションを doブロックでまとめたものになっています。 doブロックの
最初の行は、初登場の関数 openFile です。これは次のような型シグネチャを
持っています。

openFile :: FilePath -> IOMode -> IO Handle

openFile は、ファイルパスと IOMode を受け取り、そのファイルを開いて、
そのファイルに関連付けられたハンドルを返す I/O アクションを返します。
FilePathは単なる Stringの型シノニムです。

type FilePath = String

IOModeは次のように定義された型です。

data IOMode = ReadMode | WriteMode | AppendMode | ReadWriteMode

この型は、曜日を表す 7 つの値を取り得
る型のように、開いたファイルに対して何
をしたいのかを列挙した型です。この型は
IOMode であって IO Mode ではないことに
気をつけてください。 IO Mode だと、何か
Mode型の結果を生成する I/Oアクションを
意味するでしょう。 IOModeは単なる列挙型
です。
最終的に openFile は、指定されたファ
イルを指定されたモードで開く I/O アク
ションを返します。そのアクションの結果
を何かに束縛すれば、そのファイルに対する
Handleが得られます。そのハンドルが読み
込むファイルを示しています。
次の行では hGetContents という関数を
使っています。これは、コンテンツをどの

oyaji (20170810-501DAE64)

9.2 ファイルの読み書き 183

ファイルから読み出すべきか知っている Handleを受け取り、そのファイルに含
まれる内容を結果として返す IO Stringを返します。この関数は getContents

にとてもよく似ています。唯一の違いは、 getContents が自動的に標準入力
（つまり端末）から入力するのに対し、 hGetContentsは渡されたハンドルから
入力するという点です。それ以外の挙動はすべて同じです。

hGetContentsは、 getContentsのようにファイルの内容を一度にメモリに
読み込むことはせず、必要になったときに必要な分だけコンテンツを読みます。
これは、ファイル全体のコンテンツが contentsとして扱えるにもかかわらず実
際にはメモリに読み込まれていないという、本当に素晴らしい機能です。だか
ら、たとえとてつもなく大きなファイルを読み込んだとしても、 hGetContents

はメモリを食いつぶすことがありません。
ファイルのハンドルと実際のコンテンツの違いにも注意してください。ハン
ドルはファイルの現在の位置を指し示すポインタにすぎません。コンテンツは
ファイルに実際に書かれているものです。ファイルシステム全体をとても大き
な本だとすると、ハンドルは今読んでいる（もしくは書いている）ところを指し
示すしおりのようなものです。

putStr contentsでファイルのコンテンツを標準出力に表示し、それからハ
ンドルを受け取って、そのハンドルを閉じる I/O アクションを返す hClose を
実行します。 openFile で開いたファイルは自分で閉じる必要があるのです！
ハンドルが閉じられていないファイルを開こうとすると、プログラムは強制終了
するでしょう。

withFile 関数を使う
ファイルの内容を扱うもう 1 つの方法は、次のようなシグネチャを持つ

withFile関数を用いるものです。

withFile :: FilePath -> IOMode -> (Handle -> IO a) -> IO a

この関数は、ファイルのパスと IOMode、それに「ハンドルを受け取って I/O
アクションを返す関数」を受け取り、「そのファイルを開いてから何かして閉じ
る」という I/O アクションを返します。さらに withFileは、ファイルの操作
中に何かおかしなことが起こった場合にもファイルのハンドルを確実に閉じて
くれます。ややこしく見えるかもしれませんが、実際はとてもシンプルな関数で
す。特にラムダ式と一緒に使うと便利です。
先ほどの例を withFileを使って書き換えたのが次のコードです。

oyaji (20170810-501DAE64)

184 第 9章 もっと入力、もっと出力

import System.IO

main = do
withFile "baabaa.txt" ReadMode $ \handle -> do

contents <- hGetContents handle
putStr contents

\handle -> ...（からブロックの最後まで）はハンドルを受け取り I/Oア
クションを返す関数です。こんなふうに withFileにはよくラムダ式で関数を渡
します。実行したい I/O アクションを渡してファイルを閉じるだけではなく、
どのファイルを操作するのか、そのハンドルを I/Oアクションに教えてやらな
ければならないので、このようにして（ハンドルを受け取って）I/Oアクション
を返す関数を渡す必要があるのです。 withFileはファイルを開いてそのハンド
ルを受け取った関数に渡します。 withFileは、返ってきた I/Oアクションと
同じ動作をし、なおかつ何か失敗した場合でもファイルハンドルを確実に閉じて
くれるような I/Oアクションを作ります。

ブラケットの時間
error が呼ばれたり（空リストに対して

head が呼ばれたときなど）、あるいは入出力
の際にとてもまずいことが起こると、通常はプ
ログラムが強制終了させられ、何らかのエラー
メッセージが表示されます。そのような状況
を、例外が投げられたといいます。 withFile

関数は、このような忌むべき例外が投げられ
たときでもファイルのハンドルを閉じてくれ
るのです。
この例のような、「何らかのリソース（例え
ばファイルのハンドル）を獲得し、それに対
して何かを行う、ただしリソースが確実に解
放される（例えばファイルのハンドルを閉じ
る）ことを保証する」というシナリオは、わりとよく登場します。そのために、
Control.Exceptionモジュールに bracketという関数が用意されています。こ
の関数は次のような型シグネチャを持っています。

bracket :: IO a -> (a -> IO b) -> (a -> IO c) -> IO c

最初の引数はリソース（ファイルハンドルのような）の獲得を行う I/Oアク
ションです。2番目の引数はリソースを解放する関数です。この関数は例外が投
げられた場合でも呼ばれます。3番目の引数はリソースを受け取り、それを使っ

oyaji (20170810-501DAE64)

9.2 ファイルの読み書き 185

て何かを行う関数です。ファイルからの読み込みやファイルへの書き出しといっ
たメインの操作は、この 3番目の引数にあたります。
リソースを獲得し、それを使って何か行い、そして確実に解放することが

bracketのすべてですから、 withFileを実装するのもとても簡単です。

withFile :: FilePath -> IOMode -> (Handle -> IO a) -> IO a
withFile name mode f = bracket (openFile name mode)

(\handle -> hClose handle)
(\handle -> f handle)

bracketに渡す最初の引数によってファイルが開き、その結果はファイルの
ハンドルです。2つ目の引数はハンドルを受け取り、それを閉じます。 bracket

は、たとえ例外が発生しようとも、確実にハンドルを閉じる処理を実行します。
最後の 3 つ目の引数は、ハンドルを受け取り、それに f を適用します。この f

は、ファイルハンドルを受け取り、そのハンドルに対してファイルからの読み書
きといった操作を行う関数です。

ハンドルを握れ！
hGetContentsが指定したファイルに対して動作する getContentsであるよ

うに、 hGetLine、 hPutStr、 hPutStrLn、 hGetCharのような関数にも hが
付かないバージョンがあって、ハンドルを取らない代わりに標準入出力に対して
動作します。例えば、 putStrLnは文字列を受け取り、それを端末に表示してか
ら改行文字を出力するという I/Oアクションを返します。 hPutStrLnはハンド
ルと文字列を受け取り、ハンドルに対応したファイルに文字列を書き込み、さら
に改行文字を書き込むという I/O アクションを返します。同様に、 hGetLine

はハンドルを受け取り、そのファイルから 1行入力する I/Oアクションを返し
ます。
ファイルを読み込み、そのコンテンツを文字列として扱うというのは、とても
一般的な操作です。そのため、これを手軽にするためのシャレた関数が 3つ用意
されています。 readFile、 writeFile、 appendFileです。

readFile関数は、readFile :: FilePath -> IO Stringという型シグネチ
ャを持つ関数です（ FilePathは Stringの小洒落た別名でしたね）。 readFile

はファイルのパスを受け取り、そのファイルを読み込み（もちろん遅延します）、
その内容を表す文字列を返す I/O アクションを返します。普通なら openFile

を呼んでから hGetContentsをそのハンドルで呼び出さなければいけないので、
それよりお手軽です。前の例を readFile関数を使って書くとこうなります。

oyaji (20170810-501DAE64)

186 第 9章 もっと入力、もっと出力

import System.IO

main = do
contents <- readFile "baabaa.txt"
putStr contents

ファイルを示すハンドルを獲得しないので、それを手動で閉じることはでき
ません。 readFile を使う場合、ハンドルを閉じるのは Haskell が自動で行い
ます。

writeFile は writeFile :: FilePath -> String -> IO () 型の関数で
す。これはファイルのパスと、そのファイルに書き込みたい文字列を受け取り、
その書き込みを行う I/Oアクションを返します。指定されたファイルがすでに
存在している場合、ファイルは上書きされます。次のコードは baabaa.txt か
ら、それを大文字化したバージョンの baabaacaps.txt を生成するプログラム
です。

import System.IO
import Data.Char

main = do
contents <- readFile "baabaa.txt"
writeFile "baabaacaps.txt" (map toUpper contents)

appendFile関数は writeFileと同じ型シグネチャを持ち、同じような動作
をしますが、appendFileはすでにファイルが存在していた場合に上書きするの
ではなくファイルの末尾に追記するという点が異なります。

9.3 ToDoリスト
ToDoリスト（やらなければならないことリスト）をテキストファイルに追加

するプログラムを作るのに appendFile関数を使ってみましょう。todo.txtと
いう名前のファイルにタスクが 1 行ごとに書かれているものとします。プログ
ラムは、標準入力から 1行ずつ読み込んで、それを ToDoリストに追加します。

import System.IO

main = do
todoItem <- getLine
appendFile "todo.txt" (todoItem ++ "\n")

各行の最後に "\n" を追加していることに注意してください。 getLine は改
行文字を除いた文字列を返してくるからです。
これを appendtodo.hsに保存して、コンパイルして、実行します。いくつか

ToDoリストのアイテムを与えてみましょう。

oyaji (20170810-501DAE64)

9.3 ToDoリスト 187

$./appendtodo
Iron the dishes
$./appendtodo
Dust the dog
$./appendtodo
Take salad out of the oven
$ cat todo.txt
Iron the dishes
Dust the dog
Take salad out of the oven

NOTE cat は Unix 系のシステムでファイルの中身を端末に表示するプログラムです。
Windowsシステムでは、お好みのエディタで todo.txtの内容を確認しましょう。

アイテムの削除
todo.txtの ToDoリストに新しいアイテムを追加するプログラムを作りまし

た。次はアイテムを削除するプログラムを作りましょう。 System.Directory

の新しい関数をいくつかと、 System.IOの新しい関数を 1つ使います。解説の
前に、まずはコードを見てみましょう。

import System.IO
import System.Directory
import Data.List

main = do
contents <- readFile "todo.txt"
let todoTasks = lines contents

numberedTasks = zipWith (\n line -> show n ++ " - " ++ line)
[0..] todoTasks

putStrLn "These are your TO-DO items:"
mapM_ putStrLn numberedTasks
putStrLn "Which one do you want to delete?"
numberString <- getLine
let number = read numberString

newTodoItems = unlines $ delete (todoTasks !! number) todoTasks
(tempName, tempHandle) <- openTempFile "." "temp"
hPutStr tempHandle newTodoItems
hClose tempHandle
removeFile "todo.txt"
renameFile tempName "todo.txt"

最初に todo.txt を読み込み、その内容を contents に束縛します。それか
ら、その文字列を行ごとに分割し、文字列のリストにします。ここで todoTasks

は次のようになっているでしょう。

["Iron the dishes", "Dust the dog", "Take salad out of the oven"]

oyaji (20170810-501DAE64)

188 第 9章 もっと入力、もっと出力

このリストと、0から始まるリストを、数（例えば 3）と文字列（例えば"hey"）
を受け取り、新しい文字列（ "3 - hey" ）を返す関数で zip します。さて、
numberedTasksは次のようになっているはずです。

["0 - Iron the dishes"
,"1 - Dust the dog"
,"2 - Take salad out of the oven"
]

それから mapM_ putStrLn numberedTasksで行ごとに表示して、どれを削除
したいのかをユーザに問い合わせます。今、 1（ Dust the dog）を削除したい
としましょう。端末に 1 を打ち込みます。そうすると、 numberString は "1"

になります。文字列じゃなくて数が欲しいので、この文字列に対して readを適
用します。すると 1が得られ、これが letで numberに束縛されます。

Data.Listの deleteと !!関数を覚えていますか？ !!は、添字に対応する
リストの要素を返します。 deleteは、リストから指定した要素のうち最初に出
てくるものを削除した新しいリストを返します。 (todoTasks !! number) は
"Dust the dog"になります。そして todoTasksの中から "Dust the dog"の
最初の出現を削除し、 unlinesを使って改行文字で区切られた 1つの文字列に
連結します。それが newTodoItemsになります。
それから、 System.IOにある初登場の関数 openTempFileを使います。名前

が示すように、この関数は一時ディレクトリ（temp directory）のパスとファイ
ル名のテンプレートを受け取り、一時ファイルを開きます。ここでは一時ディレ
クトリとして "."を使っています。 "."はどの OSでもカレントディレクトリ
を表します。一時ファイル名のテンプレートとしては "temp"を使っています。
一時ファイルの名前は、 "temp"の後ろにランダムな文字をいくつか付けたもの
になります。 openTempFile が返す I/O アクションは、一時ファイルを開き、
そのファイル名とハンドルのペアを返します。todo2.txt のような名前の普通
のファイルを開いても同じことはできますが、 openTempFile を使うようにし
てください。 openTempFile を使えば、何かが入っているファイルにうっかり
上書きしないことが保証されるからです。
一時ファイルを開いたので、それに newTodoItemsを書き込みます。古いファ

イルは変更されず、削除すべきものを削除した新しいリストが一時ファイルに格
納されます。
その後で、一時ファイルと元のファイルの両方を閉じます。それから、

removeFile で元のファイルを削除します。これには削除したいファイルへ
のパスを渡します。古い todo.txt を削除したら、 renameFile を使って一時
ファイルの名前を todo.txtに変更します。 removeFileと renameFile（両方

oyaji (20170810-501DAE64)

9.3 ToDoリスト 189

とも System.Directory の関数）は、引数としてハンドルではなくファイルの
パスを受け取ります。
このプログラムを deletetodo.hs に保存し、コンパイルして実行してみま

しょう。

$./deletetodo
These are your TO-DO items:
0 - Iron the dishes
1 - Dust the dog
2 - Take salad out of the oven
Which one do you want to delete?
1

どのアイテムが残っているか見てみましょう。

$ cat todo.txt
Iron the dishes
Take salad out of the oven

おー、素晴らしい！ アイテムをもっと消しましょう。

$./deletetodo
These are your TO-DO items:
0 - Iron the dishes
1 - Take salad out of the oven
Which one do you want to delete?
0

ファイルを調べて、残っているアイテムが 1つになっているか確認します。

$ cat todo.txt
Take salad out of the oven

というわけで、すべてうまく動いています。しかし、このプログラムには 1箇
所だけ少し気になる点があります。一時ファイルを開いた後でプログラムが異
常終了したら、一時ファイルが残ってしまいます。これを修正しましょう。

クリーンアップ
問題が起こった場合でも一時ファイルが確実に削除されるようにするために、

Control.Exceptionにある bracketOnError関数を使うことにします。この関
数は bracketにとてもよく似ていますが、 bracketでは処理が終わると常に獲
得したリソースを開放するのに対し、 bracketOnError は何らかの例外が発生
したときのみリソースを開放します。

oyaji (20170810-501DAE64)

190 第 9章 もっと入力、もっと出力

import System.IO
import System.Directory
import Data.List
import Control.Exception

main = do
contents <- readFile "todo.txt"
let todoTasks = lines contents

numberedTasks = zipWith (\n line -> show n ++ " - " ++ line)
[0..] todoTasks

putStrLn "These are your TO-DO items:"
mapM_ putStrLn numberedTasks
putStrLn "Which one do you want to delete?"
numberString <- getLine
let number = read numberString

newTodoItems = unlines $ delete (todoTasks !! number) todoTasks
bracketOnError (openTempFile "." "temp")

(\(tempName, tempHandle) -> do
hClose tempHandle
removeFile tempName)

(\(tempName, tempHandle) -> do
hPutStr tempHandle newTodoItems
hClose tempHandle
removeFile "todo.txt"
renameFile tempName "todo.txt")

普通に openTempFile を使うのではなく、 bracketOnError と一緒に使いま
した。引数として、エラーが発生したときにすべきこと、つまり、一時ハンドル
を閉じてから一時ファイルを削除するというラムダ式を渡しています。最後に、
一時ファイルを使って何をしたいかを記述しています。この部分は前と同じで
す。新しいアイテムリストを書き出し、一時ファイルのハンドルを閉じて、今の
ファイルを削除し、一時ファイルの名前を変更しています。

9.4 コマンドライン引数
端末で動作するスクリプトやアプ

リケーションを作りたいなら、コマン
ドライン引数を扱うことは不可欠で
す。Haskell の標準ライブラリには、
コマンドライン引数を扱うための便
利な方法が用意されています。やり
ましたね。
前の節で、ToDo リストにアイテ

ムを追加するプログラムと、アイテ

oyaji (20170810-501DAE64)

9.4 コマンドライン引数 191

ムを削除するプログラムをそれぞれ作りました。これらのプログラムの問題
は、ToDo ファイルの名前がハードコードされていることです。ファイル名を
todo.txtに決め打ちし、複数の ToDoリストを管理するというニーズがないも
のとしていました。

1つの解決方法は、ToDoリストのファイル名を毎回ユーザに尋ねるというも
のです。このアプローチは、どのアイテムを削除するかを決めるときに使いまし
た。それでも動作はしますが、これはユーザに「プログラムを走らせてから、プ
ログラムが何か聞いてくるのを待って、プログラムに何か入力する」という要求
をするわけで、あまり理想的な解決策ではありません。ちなみに、これは対話的
（interactive）プログラムと呼ばれています。
対話的なコマンドラインプログラムには難点があります。スクリプトから呼

び出してプログラムの実行を自動化したいとき、どうすればいいでしょう？ プ
ログラムと対話するスクリプトを書くのは、単純にプログラム（1つでも複数で
も）を呼び出すスクリプトを書くよりも難しいものです。そのため、プログラム
の実行に必要な情報は、プログラムを実行している間ではなく、プログラムを起
動するときにユーザに問い合わせるようにしたいのです。プログラムに何をさ
せたいかをユーザからプログラムに伝える方法として、コマンドライン引数より
マシな方法はありません。

System.Environmentモジュールは、コマンドライン引数を取得するのに便
利な 2つの素敵な I/Oアクション、 getArgsと getProgNameを提供していま
す。 getArgsは getArgs :: IO [String]という型を持ちます。これは、プロ
グラムに与えられた引数を取得して、それを文字列のリストとして返す I/Oア
クションです。 getProgName は getProgName :: IO String という型を持ち
ます。これはプログラム名を返す I/Oアクションです。これらがどのように動
作するか、次の小さなプログラムで見てみましょう。

import System.Environment
import Data.List

main = do
args <- getArgs
progName <- getProgName
putStrLn "The arguments are:"
mapM putStrLn args
putStrLn "The program name is:"
putStrLn progName

最初にコマンドライン引数を args に束縛して、それからプログラム名を
progNameに束縛します。次に、 putStrLnを使ってプログラムの引数をすべて

oyaji (20170810-501DAE64)

192 第 9章 もっと入力、もっと出力

表示し、それからプログラム自身の名前を表示します。このコードを arg-test

としてコンパイルし、実行してみましょう。

$./arg-test first second w00t "multi word arg"
The arguments are:
first
second
w00t
multi word arg
The program name is:
arg-test

9.5 ToDoリストをもっと楽しむ
前の例では、タスクを追加するプログラムと削除するプログラムを完全に別々

のプログラムとして作成しました。ここでは、両方のプログラムを 1つにまとめ
て、追加するか削除するかをプログラムに渡すコマンドライン引数で選択できる
ようにしましょう。さらに、todo.txtではなく別のファイルも操作できるよう
にしましょう。
このプログラムを todoという名前にすることにして、次の 3つの異なる操作

を行えるようにします。s タスクの閲覧s タスクの追加s タスクの削除
タスクを todo.txtに追加するには、端末に次のように入力します。

$./todo add todo.txt "Find the magic sword of power"

タスクを閲覧するには viewコマンドを入力します。

$./todo view todo.txt

タスクの削除には番号を使います。

$./todo remove todo.txt 2

マルチタスクタスクリスト
まず、コマンドを "add"や "view"のような文字列として受け取り、引数のリ

ストを受け取って望みの動作を行う I/Oアクションを返す関数を作ります。

oyaji (20170810-501DAE64)

9.5 ToDoリストをもっと楽しむ 193

import System.Environment
import System.Directory
import System.IO
import Data.List

dispatch :: String -> [String] -> IO ()
dispatch "add" = add
dispatch "view" = view
dispatch "remove" = remove

mainを次のように定義します。

main = do
(command:argList) <- getArgs
dispatch command argList

最初に、コマンドライン引数を取得してそれらを (command:argList)に束縛
します。これは、最初の引数を commandに束縛して、残りの引数を argListに
束縛するという意味です。 mainブロックの次の行で dispatch関数にコマンド
（ command）を渡し、これは add、 view、 removeのいずれかを返します。そ
れから、その関数に argListを渡します。
プログラムを次のように呼び出すとしましょう。

$./todo add todo.txt "Find the magic sword of power"

commandが "add"に、argListが ["todo.txt", "Find the magic sword

 of power"] になります。 dispatch関数の 2 つ目のパターンマッチが成功し
て、これは add関数を返します。最後に、それに対して argListを適用し、こ
れは ToDoリストにアイテムを追加する I/Oアクションになります。

addと viewと remove関数を実装していきましょう。 addから始めます。

add :: [String] -> IO ()
add [fileName, todoItem] = appendFile fileName (todoItem ++ "\n")

これでプログラムを次のように呼び出せるようになりました。

./todo add todo.txt "Find the magic sword of power"

mainブロックの最初のパターンマッチで、"add"は commandに束縛され、そ
れから ["todo.txt", "Find the magic sword of power"] が dispatch 関
数の返すものに渡されます。今のところ、正しくない入力に対する処理はまった
く考慮しないことにして、引数を単に 2要素のリストにパターンマッチしていま
す。これは、タスクと改行文字をファイルの末尾に追記する I/Oアクションを
返します。
次にリスト閲覧機能を実装しましょう。ファイルのアイテムを見たいとき
は ./todo view todo.txt と実行します。最初のパターンマッチによって、

oyaji (20170810-501DAE64)

194 第 9章 もっと入力、もっと出力

commandは "view"になり、 argListは ["todo.txt"]になります。次のコー
ドがこの関数の実装です。

view :: [String] -> IO ()
view [fileName] = do

contents <- readFile fileName
let todoTasks = lines contents

numberedTasks = zipWith (\n line -> show n ++ " - " ++ line)
[0..] todoTasks

putStr $ unlines numberedTasks

ToDoリストからアイテムを削除するだけの deletetodoプログラムを作った
とき、ToDoリストを閲覧する機能も付けていました。そのため、このコードは
前のプログラムのその部分にとても似通っています。
最後に remove を実装します。これもタスクを削除するだけのプログラムと

とてもよく似ているので、コードがどのように動作するか分からなければ 187
ページの「アイテムの削除」を見返してください。大きな違いは、ファイル名
todo.txtをハードコードする代わりに引数として与えているところと、タスク
番号を標準入力ではなくこれも引数から取得しているところです。

remove :: [String] -> IO ()
remove [fileName, numberString] = do

contents <- readFile fileName
let todoTasks = lines contents

numberedTasks = zipWith (\n line -> show n ++ " - " ++ line)
[0..] todoTasks

putStrLn "These are your TO-DO items:"
mapM_ putStrLn numberedTasks
let number = read numberString

newTodoItems = unlines $ delete (todoTasks !! number) todoTasks
bracketOnError (openTempFile "." "temp")

(\(tempName, tempHandle) -> do
hClose tempHandle
removeFile tempName)

(\(tempName, tempHandle) -> do
hPutStr tempHandle newTodoItems
hClose tempHandle
removeFile "todo.txt"
renameFile tempName "todo.txt")

fileNameに基づいてファイルを開き、一時ファイルを作成して削除したい行
を削除し、それを一時ファイルに書き込み、元のファイルを削除し、一時ファイ
ルの名前を fileNameに変更します。
素晴らしきこのプログラムの全貌をここに記しておきます。

oyaji (20170810-501DAE64)

9.5 ToDoリストをもっと楽しむ 195

import System.Environment
import System.Directory
import System.IO
import Data.List

dispatch :: String -> [String] -> IO ()
dispatch "add" = add
dispatch "view" = view
dispatch "remove" = remove

main = do
(command:argList) <- getArgs
dispatch command argList

add :: [String] -> IO ()
add [fileName, todoItem] = appendFile fileName (todoItem ++ "\n")

view :: [String] -> IO ()
view [fileName] = do

contents <- readFile fileName
let todoTasks = lines contents

numberedTasks = zipWith (\n line -> show n ++ " - " ++ line)
[0..] todoTasks

putStr $ unlines numberedTasks

remove :: [String] -> IO ()
remove [fileName, numberString] = do

contents <- readFile fileName
let todoTasks = lines contents

numberedTasks = zipWith (\n line -> show n ++ " - " ++ line)
[0..] todoTasks

putStrLn "These are your TO-DO items:"
mapM_ putStrLn numberedTasks
let number = read numberString

newTodoItems = unlines $ delete (todoTasks !! number) todoTasks
bracketOnError (openTempFile "." "temp")

(\(tempName, tempHandle) -> do
hClose tempHandle
removeFile tempName)

(\(tempName, tempHandle) -> do
hPutStr tempHandle newTodoItems
hClose tempHandle
removeFile "todo.txt"
renameFile tempName "todo.txt")

ここでの解法をまとめると、コマンドから「リストの形でコマンドライン引
数を受け取って I/Oアクションを返す関数」への橋渡しをする dispatchを作
りました。関数 dispatch は、 commandが何かに基づいて適切な関数を返しま
す。その関数をコマンドライン引数の残りと一緒に呼び出し、適切な操作を行う
I/Oアクションを取得して、それを実行します。このように、高階関数を使うこ

oyaji (20170810-501DAE64)

196 第 9章 もっと入力、もっと出力

とで、まず dispatch関数から適切な関数を受け取り、次にその関数にコマンド
ライン引数を渡して I/Oアクションを得る、という設計が可能になったのです。
さっそくこのアプリを試してみましょう！

$./todo view todo.txt
0 - Iron the dishes
1 - Dust the dog
2 - Take salad out of the oven

$./todo add todo.txt "Pick up children from dry cleaners"

$./todo view todo.txt
0 - Iron the dishes
1 - Dust the dog
2 - Take salad out of the oven
3 - Pick up children from dry cleaners

$./todo remove todo.txt 2

$./todo view todo.txt
0 - Iron the dishes
1 - Dust the dog
2 - Pick up children from dry cleaners :

dispatch関数を使っていることで、簡単に機能を追加できるという利点もあ
ります。 dispatch にパターンを追加して対応する関数を実装するだけで万事
OK ！ 練習として、ファイルとタスクの番号を受け取り、そのタスクを ToDo
リストの先頭に持ってくる bump関数を実装してみましょう。

不正な入力に対応する
不正な入力に対して Haskell からの分かりづらいエラーメッセージをただ表

示するのではなく、もう少しちゃんと失敗するようにプログラムを拡張できま
す。まずは、すべてを拾うパターンを dispatch関数の最後に追加して、そのよ
うなコマンドが存在しなかった旨を表示する関数を返すようにします。

dispatch :: String -> [String] -> IO ()
dispatch "add" = add
dispatch "view" = view
dispatch "remove" = remove
dispatch command = doesntExist command

doesntExist :: String -> [String] -> IO ()
doesntExist command _ =

putStrLn $ "The " ++ command ++ " command doesn't exist"

add、 view、 removeのそれぞれの関数に対してもすべて拾うパターンを追
加して、与えられたコマンドに対して引数の数が違うということをユーザに伝え

oyaji (20170810-501DAE64)

9.6 ランダム性 197

ることができます。

add :: [String] -> IO ()
add [fileName, todoItem] = appendFile fileName (todoItem ++ "\n")
add _ = putStrLn "The add command takes exactly two arguments"

もし addにちょうど 2要素のリスト以外が与えられた場合は、最初のパター
ンマッチは失敗し、2番目のパターンマッチに拾われます。そして、何を間違え
たのかをユーザに分かりやすく表示します。 viewと removeにも同様の処理を
追加できます。
まだすべての不正な入力をカバーしきれていないことに注意してください。例

えば、プログラムを次のように実行するとします。

$./todo

この場合、プログラムはクラッシュします。なぜなら、 do ブロックで
(command:argList) というパターンを使っていますが、これは引数が 1 つ
もない場合を考慮していないからです！ また、ファイルを開く前にそれが存在
しているかの検査もしていません。これらの事前検査を追加するのは難しくあ
りませんが、いくぶん退屈なので、このプログラムを完全に不正な入力に対処す
るようにするのは読者の皆さんへの練習問題としておきます。

9.6 ランダム性
プログラミングをしていると、ラン

ダムなデータが欲しくなることがよく
あります（まあ実際には疑似乱数であっ
て、本当のランダム性は片手にチーズ、
もう片方に風船を持って一輪車に乗っ
たサルからしか得られないってことは
みんな知ってます）。例えば、サイコロ
を投げる必要のあるゲームや、プログ
ラムのためのテストデータを生成する
必要がある場合などです。この節では、
Haskell でランダムなデータを生成す
る方法と、なぜ十分にランダムな値を
生成するのに外部からの入力が必要な
のかを説明していきます。
たいていのプログラミング言語は乱数を返す関数を持っています。関数を呼

び出すたびに違う乱数が返ります。Haskellはどうでしょう？ ええと、Haskell

oyaji (20170810-501DAE64)

198 第 9章 もっと入力、もっと出力

が純粋関数型言語だということを思い出してください。これはすなわち参照透
明性を持つということでした。そして参照透明性は、関数が同じ引数で 2回呼ば
れたなら必ず同じ結果を生成しなければならないことを意味します。これは本
当に素晴らしい性質です。なぜなら、そのおかげでプログラムが本当に必要にな
るまで値の評価を遅らせることができるようになるからです。ところが、これが
乱数を得るのを少々厄介にしている原因でもあります。
次のような関数があると考えます。

randomNumber :: Int
randomNumber = 4

あまり役に立たない乱数関数です。常に 4 を返すからです（でも 4 は完全に
ランダムですよ。だって僕がサイコロで決めたんだから）。
他の言語では、どうやって一見ランダムに見える数を生成しているのでしょ

う？ それらはまず初期データを受け取ります。例えば現在時刻のようなもので
す。それに基づいてランダムに見える数を生成します。Haskellでも、何か初期
データ、あるいはランダム性を受け取り、それから乱数を生成する関数を作れま
す。ランダム性は I/Oを使って外から持ってきます。

System.Randomモジュールを見てみましょう。このモジュールは乱数生成に
必要なすべての関数を持っています。それでは、ここからエクスポートされてい
る関数 randomを見ていきましょう。型シグネチャは次のようになっています。

random :: (RandomGen g, Random a) => g -> (a, g)

うわぁ！ 型宣言に新しい型クラスがありますよ！ RandomGen型クラスはラ
ンダム性の源として扱える型を表し、 Random型クラスはランダムな値になるこ
とのできる型を表します。例えば、真理値は Trueか Falseからランダムに選ぶ
ことにより生成できます。同様に数も生成できます。関数はランダムな値にで
きるでしょうか？ できるとは思えません！ randomの型宣言を日本語に翻訳し
てみると、次のような感じになるでしょう。「乱数ジェネレータ（ランダム性の
源）を受け取り、ランダムな値と新しい乱数ジェネレータを返す」。なぜランダ
ムな値と一緒に新しいジェネレータも返すのでしょうか？ すぐに分かりますよ。

random関数を使うためには、何らかの乱数ジェネレータを手に入れる必要が
あります。 System.Randomモジュールには StdGenという良い感じの型があり
ます。これは型クラス RandomGen のインスタンスになっています。 StdGenを
手動で作ったり、ある種の乱数源をもとにシステムに生成してもらったりでき
ます。
手動で乱数ジェネレータを作るには mkStdGen 関数を使います。これは

mkStdGen :: Int -> StdGenという型を持ちます。整数を引数に取り、その値

oyaji (20170810-501DAE64)

9.6 ランダム性 199

をもとに乱数ジェネレータを返します。OK、それじゃあ random と mkStdGen

を連携させて、（ほぼ）ランダムな数を作ってみましょう。

ghci> random (mkStdGen 100)
<interactive>:1:0:

Ambiguous type variable ‘a' in the constraint:
‘Random a' arising from a use of ‘random' at <interactive>:1:0-20

Probable fix: add a type signature that fixes these type variable(s)

なんだこれは？ ああ、そうか。 random関数は Random型クラスの任意の型を
返す可能性があるんでした。だから、どの型が欲しいのか Haskell に教えてや
る必要があります。ランダムな値と乱数ジェネレータのペアが返ってくること
も忘れずに。

ghci> random (mkStdGen 100) :: (Int, StdGen)
(-1352021624,651872571 1655838864)

ランダムっぽい値が得られました！ タプルの 1番目の要素がその数で、2番
目の要素は新しい乱数ジェネレータの数値としての表現です。同じ乱数ジェネ
レータに対して randomを再度呼び出すと何が起こるでしょうか？

ghci> random (mkStdGen 100) :: (Int, StdGen)
(-1352021624,651872571 1655838864)

もちろん、先ほどと同じ結果が得られます。では、異なる乱数ジェネレータを
引数として渡してみましょう。

ghci> random (mkStdGen 949494) :: (Int, StdGen)
(539963926,466647808 1655838864)

素晴らしい、違う数です！ 別の型のランダムな値は型注釈を使って得ること
ができます。

ghci> random (mkStdGen 949488) :: (Float, StdGen)
(0.8938442,1597344447 1655838864)
ghci> random (mkStdGen 949488) :: (Bool, StdGen)
(False,1485632275 40692)
ghci> random (mkStdGen 949488) :: (Integer, StdGen)
(1691547873,1597344447 1655838864)

コイントス
3回のコイントスをシミュレートする関数を書きましょう。もし randomがラ
ンダムな値と一緒に新しい乱数ジェネレータを返さなければ、それぞれのコイン
トスの結果を生成するために、この関数に 3 つの乱数ジェネレータを渡す必要
があるでしょう。しかし、1つのジェネレータで Int型（たくさんの異なる値を

oyaji (20170810-501DAE64)

200 第 9章 もっと入力、もっと出力

取り得る）のランダムな値を生成できるのだから、3回のコイントスの結果（8
通りしかない）だって生成できてしかるべきです。ランダムな値と一緒に新しい
ジェネレータを返す random がここで役に立ちます。
コインを単純に Bool として表すことにします。 True が裏で、 False が表

です。

threeCoins :: StdGen -> (Bool, Bool, Bool)
threeCoins gen =

let (firstCoin, newGen) = random gen
(secondCoin, newGen') = random newGen
(thirdCoin, newGen'') = random newGen'

in (firstCoin, secondCoin, thirdCoin)

random にジェネレータを渡して、コイントスの結果と、新しいジェネレー
タを生成します。それから、新しいジェネレータで再度 randomを呼び出し、2
つ目のコイントスの結果を得ます。3 つ目のコインも同様にします。3 回とも
同じジェネレータで呼び出したら、すべてのコイントスの結果は同じになり、
(False, False, False) か (True, True, True) のどちらかの結果しか得ら
れないでしょう。

ghci> threeCoins (mkStdGen 21)
(True,True,True)
ghci> threeCoins (mkStdGen 22)
(True,False,True)
ghci> threeCoins (mkStdGen 943)
(True,False,True)
ghci> threeCoins (mkStdGen 944)
(True,True,True)

random gen :: (Bool, StdGen)として呼び出す必要がなかったことに注意
してください。すでに threeCoins関数の型シグネチャに真理値が欲しい！ と
書いてあるので、 random genでも真理値型の乱数が欲しいんだな、とHaskell
は推論してくれます。

ランダムな関数をもっと
もっとたくさんのコインを投げたいときはどうすればいいでしょうか？ その

ために randoms という関数があります。これは、ジェネレータを受け取って、
そのジェネレータに基づく無限長のランダムな値のリストを返す関数です。

ghci> take 5 $ randoms (mkStdGen 11) :: [Int]
[-1807975507,545074951,-1015194702,-1622477312,-502893664]
ghci> take 5 $ randoms (mkStdGen 11) :: [Bool]
[True,True,True,True,False]
ghci> take 5 $ randoms (mkStdGen 11) :: [Float]
[7.904789e-2,0.62691015,0.26363158,0.12223756,0.38291094]

oyaji (20170810-501DAE64)

9.6 ランダム性 201

なぜ randoms はリストと一緒に新しいジェネレータを返さないのでしょう
か？ randoms関数は次のようにとても簡単に実装できます。

randoms' :: (RandomGen g, Random a) => g -> [a]
randoms' gen = let (value, newGen) = random gen in value:randoms' newGen

これは再帰的な定義です。ランダムな値と新しいジェネレータを受け取って、
その値を headに、新しいジェネレータで作ったリストを残りの要素としてリス
トを作ります。この関数には無限の長さのリストを生成できてほしいので、新し
い乱数ジェネレータを返してもらうことはできません。
有限のリストと新しいジェネレータを生成する関数なら作れます。

finiteRandoms :: (RandomGen g, Random a, Num n) => n -> g -> ([a], g)
finiteRandoms 0 gen = ([], gen)
finiteRandoms n gen =

let (value, newGen) = random gen
(restOfList, finalGen) = finiteRandoms (n-1) newGen

in (value:restOfList, finalGen)

これもまた再帰的定義になっています。0個の数を生成したいとしたら、単純
に空のリストと与えられたジェネレータをそのまま返します。それ以外の個数
のランダムな値を返す場合は、まず乱数を 1つとジェネレータを生成します。こ
の数が head の要素になります。それから新しいジェネレータを使って n - 1

個の整数を生成し、リストの残りの部分とします。これらをくっつけたものと最
終的なジェネレータとをペアにして結果として返します。
ある範囲の乱数を生成したい場合はどうすればいいでしょうか？ ある数より
小さい整数の乱数全部、というのでは、欲しい値に対して大きすぎたり小さすぎ
たりします。サイコロを投げたい場合は？ これには randomRを使います。型は
こうなっています。

randomR :: (RandomGen g, Random a) :: (a, a) -> g -> (a, g)

random に似ていますが、1 つ目の引数として上限と下限のペアを受け取り、
その範囲内の値を生成します。

ghci> randomR (1,6) (mkStdGen 359353)
(6,1494289578 40692)
ghci> randomR (1,6) (mkStdGen 35935335)
(3,1250031057 40692)

randomRs関数も同じく用意されていて、指定された範囲の乱数を無限に生成
します。試してみましょう。

ghci> take 10 $ randomRs ('a','z') (mkStdGen 3) :: [Char]
"ndkxbvmomg"

秘密のパスワードっぽいですね？

oyaji (20170810-501DAE64)

202 第 9章 もっと入力、もっと出力

ランダム性と I/O
乱数の話が I/Oの章で扱われているのに違和感があるかもしれません。今の

ところ乱数の話では何も I/O を扱ってません。乱数ジェネレータに手作業で
適当な整数を与えていました。これでは現実の問題を扱うのには不十分です。
プログラムが返すのは毎回同じ乱数になってしまいます。この動作は望まし
くありません。これを解決するために、 System.Random は getStdGen という
IO StdGen型の I/Oアクションを提供しています。このアクションは、何らか
の初期データを使ってシステムのグローバル乱数ジェネレータを初期化します。
getStdGenはそのグローバル乱数ジェネレータを返します。
グローバル乱数ジェネレータを使ってランダムな文字列を生成するシンプル
なプログラムの例です。

import System.Random

main = do
gen <- getStdGen
putStrLn $ take 20 (randomRs ('a','z') gen)

試してみましょう。

$./random_string
pybphhzzhuepknbykxhe
$./random_string
eiqgcxykivpudlsvvjpg
$./random_string
nzdceoconysdgcyqjruo
$./random_string
bakzhnnuzrkgvesqplrx

でも注意してください。 getStdGen を 2 回実行しても、システムは同じグ
ローバル乱数ジェネレータを 2回返すだけです。

import System.Random

main = do
gen <- getStdGen
putStrLn $ take 20 (randomRs ('a','z') gen)
gen2 <- getStdGen
putStr $ take 20 (randomRs ('a','z') gen2)

同じ文字列が 2回表示されるはずです！
2つの異なる文字列を得るベストな方法は、現在の乱数ジェネレータを 2つの
ジェネレータに分割する、 newStdGenアクションです。このアクションは、グ
ローバル乱数ジェネレータを分割した片方で置き換え、もう片方を結果として返
します。

oyaji (20170810-501DAE64)

9.6 ランダム性 203

import System.Random

main = do
gen <- getStdGen
putStrLn $ take 20 (randomRs ('a','z') gen)
gen' <- newStdGen
putStr $ take 20 (randomRs ('a','z') gen')

newStdGenを束縛すると、新しい乱数
ジェネレータが得られるだけでなく、グ
ローバルジェネレータも更新されます。
これは、getStdGenを再度実行して何か
に束縛すると genに異なるジェネレータ
が得られることを意味します。
次のコードは、ユーザにプログラムが

考えた数を当てさせる小さなプログラム
です。

import System.Random
import Control.Monad(when)

main = do
gen <- getStdGen
askForNumber gen

askForNumber :: StdGen -> IO ()
askForNumber gen = do

let (randNumber, newGen) = randomR (1,10) gen :: (Int, StdGen)
putStrLn "Which number in the range from 1 to 10 am I thinking of? "
numberString <- getLine
when (not $ null numberString) $ do

let number = read numberString
if randNumber == number

then putStrLn "You are correct!"
else putStrLn $ "Sorry, it was " ++ show randNumber

askForNumber newGen

乱数ジェネレータを受け取って、数値を端末から入力してその数値が正しいか
どうかを表示する I/Oアクションを返す askForNumber関数を作ります。

askForNumber では、まず受け取った乱数ジェネレータを使って乱数と新し
い乱数ジェネレータを生成しています。それぞれを randNumberおよび newGen

と呼びます。生成された数を例えば 7 としましょうか。次に、プログラムが考
えた数は何だと思うかユーザに質問します。 getLineを実行して、その結果を
numberString に束縛します。ユーザが 7 を入力したなら、 numberString は
"7" になります。ユーザの入力が空文字ではないか、 when を使って調べます。
それから numberStringを readに渡し、数に変換します。 numberは 7になり
ます。

oyaji (20170810-501DAE64)

204 第 9章 もっと入力、もっと出力

NOTE readがパーズできない文字列（ "haha"のような）をユーザが入力した場合、プロ
グラムはクラッシュして読みにくいメッセージを表示するでしょう。そういう入力に
対してプログラムがクラッシュしないようにしたいなら、文字列のパーズに失敗した
ときに空のリストを返す reads を使いましょう。成功すると望みの値と食べ残しの
文字列のペアからなる単一要素のリストを返します。ぜひ！

入力された数がランダムに生成した数と一致するか調べて、ユーザに適切な
メッセージを表示します。それから askForNumber を再帰的に新しい乱数ジェ
ネレータで実行します。これは新しい乱数ジェネレータに基づいて実行される
点を除いて今実行したものと同じになります。

mainは、システムから乱数ジェネレータを取得し、それで askForNumberを
呼び出して、1回目のアクションを得るだけです。
プログラムの実行例です。

$./guess_the_number
Which number in the range from 1 to 10 am I thinking of?
4
Sorry, it was 3
Which number in the range from 1 to 10 am I thinking of?
10
You are correct!
Which number in the range from 1 to 10 am I thinking of?
2
Sorry, it was 4
Which number in the range from 1 to 10 am I thinking of?
5
Sorry, it was 10
Which number in the range from 1 to 10 am I thinking of?

次のコードは同じプログラムを実装する別の方法です。

import System.Random
import Control.Monad(when)

main = do
gen <- getStdGen
let (randNumber, _) = randomR (1,10) gen :: (Int, StdGen)
putStrLn "Which number in the range from 1 to 10 am I thinking of? "
numberString <- getLine
when (not $ null numberString) $ do

let number = read numberString
if randNumber == number

then putStrLn "You are correct!"
else putStrLn $ "Sorry, it was " ++ show randNumber

newStdGen
main

前のバージョンと同じように見えますが、ジェネレータを受け取って新しい
ジェネレータで再帰的に呼び出す関数を作る代わりに、すべてを mainでやって

oyaji (20170810-501DAE64)

9.7 bytestring 205

しまいます。ユーザの推測が正しいかどうかを伝えた後、グローバルジェネレー
タを更新し、 mainを再度呼び出します。双方のアプローチはどちらも正しいで
すが、最初のほうが好ましいです。 mainが行うことが少なく、関数の再利用も
簡単だからです。

9.7 bytestring

リストは確かに便利です。ここまでリス
トをあらゆる場面で利用してきました。リ
ストに対して動作する関数はたくさんある
し、Haskellの遅延評価のおかげで、リスト
に対するフィルタやマップとして他の言語
における for や while ループが書けます。
本当に必要とされたときにのみ評価される
ので、無限リスト（無限リストの無限リスト
さえも！）のようなものを扱うのも造作あり
ません。このため、リストをストリームとし
ても扱うことができます。標準入力から読
み込むときも、ファイルから読み込むときも、ファイルを開き、それを文字列と
して読むだけです。実際のファイルアクセスは必要になってから行われます。
しかし、ファイルを文字列として処理するのことには 1つ難点があります。実
行速度が遅くなりがちなのです。リストは本当に怠け者です。 [1,2,3,4]のよ
うなリストは 1:2:3:4:[]の構文糖衣でしたね。例えばリストを出力すると、最
初の要素が無理やり評価されますが、このとき残りのリスト（ 2:3:4:[]）はま
だプロミスのままです。この未評価の部分をサンク（thunk）と呼びます。
サンクというのは、要するに遅延された計算のことです。Haskell の遅延評
価は、前もってすべてを計算するのではなく、サンクを使ってそれを必要なとき
のみ計算することで実現されています。したがって、リストはプロミスだと考え
られます。それも、必要になると初めて次の要素と後続のプロミスを渡してくれ
てくれるようなプロミスです。単なる数のリストをサンクの列として処理する
のは、どう考えたって効率の面でベストとは言えないでしょう。
大きなファイルを読んだり、操作しようとしたときに、多くの場合このオー
バーヘッドが問題になるのです。これが Haskellに bytestring が存在する理由
です。bytestring はリストに似たデータ構造で、要素は 1 バイト（あるいは 8
ビット）のサイズ固定です。bytestringでは遅延評価を扱う方法も異なります。

oyaji (20170810-501DAE64)

206 第 9章 もっと入力、もっと出力

正格bytestringと遅延bytestring
bytestringには「正格」なものと「遅延」なものがあります。正格 bytestring

は Data.ByteStringで提供されていて、遅延性が完全に排除されています。サ
ンクは一切ありません。正格 bytestringは配列上のバイト列として表現されま
す。無限の正格 bytestringのようなものは作れません。正格 bytestringの最初
のバイトを評価するなら、全体を評価しなければなりません。
遅延 bytestringは Data.ByteString.Lazyで提供されます。これは遅延評価

されますが、リストほどは遅延されません。リストには、その要素数とちょう
ど同じくらいの数のサンクがあり、これが場合によってリストが遅くなる原因
です。遅延 bytestring では別の方法が採用されています。遅延 bytestring は、
64Kバイトのチャンク（chunk。thunkと混同しないようにね！）という塊に格
納されるのです。そして、遅延 bytestringを評価したら（出力するなど）、最初の
64K バイトが評価されます。残りのチャンクはプロミスです。遅延 bytestring
は、64Kバイトの正格 bytestringからなるリストだとも考えられます。ファイ
ルを遅延 bytestringで処理するときにはチャンク単位で読み込まれます。これ
が巧妙なのは、メモリ使用量の上昇を抑えつつ、しかも 64K バイトは CPU の
L2キャッシュにきちんとフィットするサイズになっているところです。

Data.ByteString.Lazyのドキュメントを見ると、Data.Listの関数と同じ
名前の関数がたくさん見つかるでしょう。これらは [a]の代わりに ByteString

を、 aの代わりに Word8を受け取ります。それらの関数はリストに対して動作
する関数に似ています。名前が同じなので、スクリプトでは修飾付きインポート
し、しかる後に GHCiにロードして bytestringを楽しむことにしましょう。

import qualified Data.ByteString.Lazy as B
import qualified Data.ByteString as S

こうすれば、 Bが遅延 bytestringの型と関数、 Sが正格 bytestringの型と関
数になります。ここではもっぱら遅延版を使うことにします。

pack :: [Word8] -> ByteString という型シグネチャを持つ pack という
関数があります。これは Word8のリストを受け取り、 ByteStringを返します。
遅延するリストを受け取り、それよりは怠け者でない 64Kバイト間隔で遅延す
る bytestringを作る関数だと考えればよいでしょう。

Word8 型は Int に似ていますが、これは 8 ビット符号なし整数を表します。
つまり、0から 255という、より小さい範囲の数です。 Intと同様に Num型ク
ラスのインスタンスです。例えば、5はご存知のように多相的であらゆる数値的
な型として振る舞えますが、 Word8としても振る舞えるということです。
数から bytestringに packする方法を示します。

oyaji (20170810-501DAE64)

9.7 bytestring 207

ghci> B.pack [99,97,110]
Chunk "can" Empty
ghci> B.pack [98..120]
Chunk "bcdefghijklmnopqrstuvwx" Empty

bytestringに packした値が少なかったので、すべて 1つのチャンク（Chunk）
に収まりました。 Empty はリストにおける [] のようなもので、空の列を表し
ます。
ご覧のとおり、数が Word8 であることを明示する必要はありません。数がそ
の型になることは、型システムによって強いられるからです。もし 336のような
大きな数を Word8として使おうとすると、オーバーフローして 80になります。

bytestringを 1バイトずつ調べる必要がある場合は unpackします。 unpack

関数は pack の逆関数です。bytestring を受け取り、バイトのリストを返しま
す。例を示します。

ghci> let by = B.pack [98,111,114,116]
ghci> by
Chunk "bort" Empty
ghci> B.unpack by
[98,111,114,116]

正格 bytestring と遅延 bytestring を相互に変換することもできます。
toChunks 関数は、遅延 bytestring を受け取り、それを正格 bytestring のリス
トに変換します。 fromChunks 関数は、正格 bytestring のリストを受け取り、
それを遅延 bytestringに変換します。

ghci> B.fromChunks [S.pack [40,41,42], S.pack [43,44,45], ⇨
S.pack [46,47,48]]

Chunk "()*" (Chunk "+,-" (Chunk "./0" Empty))

小さな正格 bytestringがたくさんあり、それらを連結せずにメモリ上で 1つ
の大きな正格 bytestringとして効率的に処理したい場合には、このような変換
をするとよいでしょう。

bytestring版の :は consです。これはバイト値と bytestringを受け取り、そ
のバイト値を先頭にくっつけます。

ghci> B.cons 85 $ B.pack [80,81,82,84]
Chunk "U" (Chunk "PQRT" Empty)

bytestringモジュールには、Data.Listなどで提供されている関数によく似た
関数がかなりあります。 head、tail、init、null、length、map、reverse、
foldl、foldr、concat、takeWhile、filter、などなど。bytestringパッ
ケージのドキュメント http://hackage.haskell.org/package/bytestring/

にすべての関数が載っています。

http://hackage.haskell.org/package/bytestring/

oyaji (20170810-501DAE64)

208 第 9章 もっと入力、もっと出力

bytestringモジュールには、 System.IOモジュールが提供する関数と同様の
動作をする関数もあります。これらは Stringsの代わりに ByteStringを受け
取ります。例えば、 System.IOの readFile関数は次の型を持っています。

readFile :: FilePath -> IO String

bytestringモジュールの readFile関数は次の型を持ちます。

readFile :: FilePath -> IO ByteString

NOTE 正格 bytestringを使ってファイルを読もうとすると、そのファイルの内容すべてがメ
モリ上に一度に読まれます！ 遅延 bytestring なら、こぢんまりとしたチャンクごと
に読まれます。

bytestringを使ったファイルのコピー
コマンドライン引数から 2つのファイル名を受け取って、1つ目のファイルを

2つ目のファイルにコピーするプログラムを作りましょう。 System.Directory

には copyFileという関数がすでにありますが、とにかく独自のファイルコピー
関数を実装しましょう。コードを次に示します。

import System.Environment
import System.Directory
import System.IO
import Control.Exception
import qualified Data.ByteString.Lazy as B

main = do
(fileName1:fileName2:_) <- getArgs
copy fileName1 fileName2

copy source dest = do
contents <- B.readFile source
bracketOnError

(openTempFile "." "temp")
(\(tempName, tempHandle) -> do

hClose tempHandle
removeFile tempName)

(\(tempName, tempHandle) -> do
B.hPutStr tempHandle contents
hClose tempHandle
renameFile tempName dest)

はじめに mainでコマンドライン引数を取得したら、 copy関数を呼び出すだ
けです。ファイルコピーの魔法は copy関数がかけます。単にファイルを読み込
み、もう片方のファイルに書き込めばコピーはできますが、何かまずいことが起
こると（コピーするのにディスクの空きが足りないなど）、おかしなファイルが

oyaji (20170810-501DAE64)

9.7 bytestring 209

残ってしまいます。そこで、いったん一時ファイルに書き込むことにします。何
かおかしなことが起こっても、そのファイルを消すだけで済みます。
最初に、 B.readFile を使ってコピー元ファイルの内容を読みます。それか

ら bracketOnError を使ってエラーハンドラをセットアップします。リソース
の獲得は openTempFile "." "temp" です。一時ファイルの名前とそのハンド
ルのタプルが返されます。次に、エラーが起こったときに何をすべきかを書きま
す。まずいことが起こったなら、ハンドルを閉じ、一時ファイルを削除します。
最後がコピー処理の本体です。 B.hPutStrを使って内容を一時ファイルに書き
出します。一時ファイルを閉じて、それをコピー先ファイル名に変更したら、望
みの処理が完了です。

readFile と hPutStr の代わりに B.readFile と B.hPutStr を使っただけ、
というのがポイントです。ファイルを開いたり閉じたり、ファイル名を変更した
りするのに、bytestring 用の特別な関数を使っていません。bytestring の関数
を必要とするのは読み書きのときだけです。
試してみましょう。

$./bytestringcopy bart.txt bort.txt

bytestringを使わないプログラムも、だいたい同じような感じになるでしょう。
唯一の違いは、readFileと writeFileの代わりに B.readFileと B.writeFile

を使っていることだけです。
普通の文字列を使ったプログラムを bytestringを使ったものに書き換えるに
は、多くの場合、単に修飾付きインポートして対応する関数の前にモジュール名
を付け足すだけです。文字列に対して動作する関数を bytestringで動作するよ
うに書き換える必要が出てくることはありますが、難しくはありません†3。
たくさんのデータを文字列として読み込むプログラムで、より良いパフォーマ

ンスを必要とするなら、bytestringを試してみてください。とても少ない労力で
パフォーマンスを向上できるチャンスです。僕はいつも、まずプログラムを普通
の文字列で書いてみて、パフォーマンスが満足できるものでなければ bytestring
を使ったものに書き換えるようにしています。

†3 ［訳注］実際には留意すべき点がいくつかあります。文字列処理については巻末の付録 Aに訳者による補
足をまとめてあるので、そちらも参照してください。

oyaji (20170810-501DAE64)

oyaji (20170810-501DAE64)

第10章
関数型問題解決法

この章ではいくつかの面白い問題をとりあげ、それを関数型プログラミングの
テクニックでできる限りエレガントに解く方法を考えます。今までの講習で身に
付けた Haskell筋力をさっそく奮って、コーディングスキルを鍛えてください。

10.1 逆ポーランド記法電卓
普通、学校で算数を習うときは中置記法で式を書きます。例えば 10 - (4 +

3) * 2という具合に。足し算（ +）、掛け算（ *）、引き算（ -）などは、Haskell
の中置関数（ +とか `elem`とか）と同じく、中置演算子です。人間は中置記法
の数式をいとも簡単に脳内でパーズできます。欠点は、演算の優先順位を指定す
るのに括弧が必要になることです。
数式を書く別の方法として逆ポーランド記法（reverse polish notation）、略

してRPNがあります。RPNでは、演算子は数に挟まれるのではなく、数の後に
きます。 4 + 3と書く代わりに 4 3 +と書くわけです。では複数の演算子を含
む数式はどのように書くのでしょう？ 例えば、まず 4と 3を足して、それに 10

を掛ける、という式はどう書くのでしょう？ 答は簡単です。 4 3 + 10 *と書
きます。ここで 4 3 +は 7なので、数式全体は 7 10 *と等価になります。

RPN記法の式を計算
RPN記法を計算する方法を感覚的につかむには、数のスタックをイメージし

てください。RPN記法は、左から右へ読みます。数を読み込んだら、それをス
タックのてっぺんに積みます（push）。演算子を読み込んだら、スタックのてっ
ぺんから 2つの数を取り出し（pop）、その 2つの数に演算子を施して、演算結
果をスタックに積み直します。式の末尾に辿り着いたら、計算結果を示す数が 1
つだけスタックに残っているはずです（数式の構文が正しければ、ですが）。

211

oyaji (20170810-501DAE64)

212 第 10章 関数型問題解決法

例えば、RPN 式 10 4 3 + 2 * - をどうやって評価するのか見ていきま
しょう。

1. まず 10をスタックに積み、スタックは 10が 1つ入った状態になります。
2. 次のアイテムは 4 なので、これもスタックに積みます。今のスタックは

10, 4です。
3. 3にも同じことをして、スタックは 10, 4, 3になります。
4. あっ、今度は演算子がきました。 + です。そこでスタックから 2 つの数
を取り出し（スタックは 10だけになります）、取り出した 2つの数を加算
し、計算結果をスタックに戻します。こうしてスタックは 10, 7 になり
ます。

5. 次にスタックに 2を積み、スタックは 10, 7, 2になります。
6. また演算子がきました。 7と 2をスタックから取り出し、掛け算して、結
果をスタックに戻します。 7掛ける 2は 14ですから、スタックは 10, 14

になります。
7. 最後に、 -があります。 10と 14をスタックから取り出し、 10から 14

を引いて、スタックに戻します。
8. スタックに乗っている数は -4です。与えられた式には、もう数も演算子
も残っていませんから、これが答です！

これが RPN式を手で計算する方法です。では、Haskellで同じことをするに
はどうすればいいか考えましょう。

RPN関数を書く
"10 4 3 + 2 * -" のような RPN 式を文字列で受け取って、その式の結果

を返す関数を書いていきましょう。

oyaji (20170810-501DAE64)

10.1 逆ポーランド記法電卓 213

この関数の型はどうなるでしょうか？「文字列を引数に取って、数を結果とし
て返す関数」ですね。割り算もできるようにしたいので、結果は倍精度浮動小数
がいいでしょう。というわけで、型はこんな感じになるんじゃないでしょうか。

solveRPN :: String -> Double

NOTE 関数の実装に取り掛かる前に、まず関数の型宣言がどうなるか考えるのはとても役立
つ習慣です。型システムがとても強力なおかげで、Haskellでは関数の型宣言を見れ
ばその関数について実にいろんなことが分かります。

Haskellで何かの問題を解くプログラム
を実装するとき、その問題を手で解いて
みた経験がヒントになることがあります。
RPN 式を手計算したときは、空白で区切
られた数や演算子のそれぞれを 1 つのア
イテムとして扱いました。ということは、
"10 4 3 + 2 * -"のような文字列を、ま
ずはアイテムのリストに分割することから
始めるとよさそうですね。
書き出してみますよ。

["10","4","3","+","2","*","-"]

それから、頭の中でこのリストをどう処理したんでしたっけ？ このリストを
左から右へと走査して、その間スタックを更新し続けたのでした。このプロセ
スって何かを思い出しませんか？ 5.5節「畳み込み、見込みアリ！」では、リス
トを一要素ごとに走査しながら何らかの結果を積み上げていく（アキュムレート
する）関数というのは、どんなアキュムレータに対しても「畳み込み」を使って
実装できることを見ました。数も、リストも、スタックも、そのほか何でも。
今回の場合、リストを左から右へ走査するので、左畳み込みを使いましょう。

アキュムレータ値はスタックなので、畳み込みが返す結果もスタックになるはず
です。ただし、すでに見たように値が 1つしか入っていないスタックです。
もう 1つ、スタックをどう表現するかも考える必要があります。そうですね、

リストを使って、リストの先頭をスタックの先頭に対応させるのがいいでしょ
う。リストの先頭（ head）に要素を追加するのは、末尾に追加するよりもずっ
と高速ですから。例えば 10, 4, 3というスタックは、 [3,4,10]というリスト
として表現することになります。
これで作りたい関数の姿がおぼろげながら見えてきました。まずその関数は

"10 4 3 + 2 * -" といった文字列を取り、それを words を使ってアイテムの

oyaji (20170810-501DAE64)

214 第 10章 関数型問題解決法

リストに分解します。次に、そのリストに左畳み込みを使って、単一の要素が
入ったスタック（この例の場合は、 [-4]）に辿り着きます。その単一要素をリ
ストから取り出して、それがファイナルアンサーです！
これがその関数のスケッチです。

solveRPN :: String -> Double
solveRPN expression = head (foldl foldingFunction [] (words expression))

where foldingFunction stack item = ...

この関数は expressionを取って、まずアイテムのリストに変えます。それか
らそのアイテムのリストを関数 foldingFunction で畳み込みます。ここで []

はアキュムレータの初期値です。アキュムレータはスタックなので、 []は空の
スタックを表しています。そして単一要素の入った最終状態のスタックを受け
取ったら、 headを使ってアイテムを取り出します。
さて、あとは畳み込み処理を行う関数を書くだけです。その関数は、例えばス

タック [4,10]とアイテム "3"を受け取って、新しいスタック [3,4,10]を返し
ます。また、スタックが [4,10] で、受け取ったアイテムが "*" なら、関数は
[40]を返すべきです。
あっ、畳み込み関数を書く前に、全体の関数をポイントフリースタイルで書き
直しておきましょう。括弧がいっぱいあるのを見ていると精神が不安定になっ
てきますからね。

solveRPN :: String -> Double
solveRPN = head . foldl foldingFunction [] . words

where foldingFunction stack item = ...

これですっきりしました。
畳み込み関数は、スタックとアイテムを取って新しいスタックを返すようにし
ます。関数定義構文でパターンマッチを使い、スタックの上側にあるアイテムを
取り出す処理と "*"や "-"のような演算子を識別する処理を一気にやりましょ
う。これが畳み込み関数の実装です。

solveRPN :: String -> Double
solveRPN = head . foldl foldingFunction [] . words

where foldingFunction (x:y:ys) "*" = (y * x):ys
foldingFunction (x:y:ys) "+" = (y + x):ys
foldingFunction (x:y:ys) "-" = (y - x):ys
foldingFunction xs numberString = read numberString:xs

4つのパターンが並んでいます。パターンは上から下へ順番に試されます。ま
ず、畳み込み関数は現在のアイテムが "*" かどうか調べます。もしそうなら、
[3,4,9,3]のようなリストを取り、その先頭の 2つの要素をそれぞれ xと yと
名づけます。この場合だと、 xが 3で yが 4になります。 ysは [9,3]になり

oyaji (20170810-501DAE64)

10.1 逆ポーランド記法電卓 215

ます。畳み込み関数は ysの頭に「 x掛ける y」を付けて返します。こうして、
スタックから先頭の 2つの数を取り出し、掛け算して、結果をスタックに積む操
作が書けました。もしアイテムが "*" でなかったら、このパターンマッチを抜
け落ちて、次は "+"を調べます。以下同様。
アイテムが既知の演算子のいずれでもなかったら、それは数を表す文字列だと
仮定します。もし本当に数だったら、 readを適用すれば中身が実数に変換でき
るはずで、その数を以前のスタックに積んで返します。
例えば ["2","3","+"]というアイテムのリストに対して、 solveRPNは左か
ら処理を始めます。初期のスタックは []です。 solveRPNは、スタック []をア
キュムレータとし、 "2"をアイテムとして foldingFunctionを呼び出します。
このアイテムは演算子ではないので、数値として解釈され、 []の先頭に追加さ
れます。こうしてスタックは [2]になります。再び foldingFunctionが、 [2]

をスタック、 "3"をアイテムとして呼び出され、新しいスタック [3,2]を生み
出します。もう一度 foldingFunction が、 [3,2] をスタック、 "+" をアイテ
ムとして呼び出されます。すると 2つの数がスタックから出てきて、加算され、
スタックに戻されます。スタックの最終状態は [5] になり、この数が返ってき
ます。
この関数で遊んでみましょう。

ghci> solveRPN "10 4 3 + 2 * -"
-4.0
ghci> solveRPN "2 3.5 +"
5.5
ghci> solveRPN "90 34 12 33 55 66 + * - +"
-3947.0
ghci> solveRPN "90 34 12 33 55 66 + * - + -"
4037.0
ghci> solveRPN "90 3.8 -"
86.2

動いてますね。素晴らしい！

演算子を追加しよう
この解法の何が良いかって、他のいろんな演算を簡単にサポートできるところ

です。二項演算子である必要もありません。例えば、数を 1つだけ取り出してそ
の対数を積む "ln"という演算も作れます。可変長の引数を取る演算子だって作
れますよ。例えば "sum"は、スタックからすべての数を取り出してその総和を
積む演算です。

RPN 電卓関数を修正してもっと多くの演算子をサポートするようにしま
しょう。

oyaji (20170810-501DAE64)

216 第 10章 関数型問題解決法

solveRPN :: String -> Double
solveRPN = head . foldl foldingFunction [] . words

where foldingFunction (x:y:ys) "*" = (y * x):ys
foldingFunction (x:y:ys) "+" = (y + x):ys
foldingFunction (x:y:ys) "-" = (y - x):ys
foldingFunction (x:y:ys) "/" = (y / x):ys
foldingFunction (x:y:ys) "^" = (y ** x):ys
foldingFunction (x:xs) "ln" = log x:xs
foldingFunction xs "sum" = [sum xs]
foldingFunction xs numberString = read numberString:xs

/はもちろん割り算で、 **は冪乗演算です。対数演算子に関しては、スタッ
クの先頭要素 1つだけと残り全部、というパターンマッチを行います。自然対数
を計算するのに引数は 1つしかいらないからです。総和演算子に関しては、直前
のスタックに入っていた数の総和、という数が 1 つだけ入ったスタックを返し
ます。

ghci> solveRPN "2.7 ln"
0.9932517730102834
ghci> solveRPN "10 10 10 10 sum 4 /"
10.0
ghci> solveRPN "10 10 10 10 10 sum 4 /"
12.5
ghci> solveRPN "10 2 ^"
100.0

任意の浮動小数点数の RPN式を計算できて、しかも容易に拡張できる関数が
たったの 10行で書けるというのは、かなり驚異的だと思いますよ。

NOTE この RPN電卓ソリューションの耐障害性はまったくもってお粗末です。意味の通ら
ない入力を受け取ると、実行時エラーになる可能性があります。でも心配ご無用。こ
の関数をもっと頑健にする方法を第 14章で扱います。

10.2 ヒースロー空港からロンドンへ
さて、僕らは卒業旅行に来ているとしましょう。今、飛行機でイギリスに着

いた僕らはレンタカーを借りました。行きたい場所はたくさんあるので、なる
べく急いでヒースロー空港からロンドンへ行かねばなりません（もちろん、安
全に！）。
ヒースロー空港からロンドンへは 2 本の幹線道路が平行に走っており、その

2つを何本もの地方道路が橋渡ししています。ある交差点から次の交差点までの
所要時間は一定とします。ロンドンでの会議に間に合うかどうかは、僕らが最適
な経路を見つけられるかにかかっています。僕らは図の左側からスタートし、地
方道路を使って幹線道路を乗り換えるか、幹線道路を先に進むかを選べます。

oyaji (20170810-501DAE64)

10.2 ヒースロー空港からロンドンへ 217

ヒースロー空港からロンドンへの最短時間の経路は、この絵から分かるよう
に、幹線道路 B からスタートし、幹線道路 Aに乗り換え、Aを先に進み、また
幹線道路 Bに乗り換え、Bを先に 2回進む経路です。この経路をとれば 75分で
ロンドンに着きます。他のどんな経路をとっても、これより長い時間がかかり
ます。
僕らの仕事は、この道路網を表現した入力を受け取り、最短経路を出力するプ

ログラムを作ることです。これが冒頭の図に対応する入力です。

50
10
30
5
90
20
40
2
25
10
8
0

この入力ファイルは、3つずつの数字の塊で道路網をセクションに分割してい
る、と思って眺めてください。各セクションの 3つの数字は、それぞれ幹線道路
A、幹線道路 B、および地方道路です。入力がちょうど三つ組の集合に当てはま
るように、最後の最後に所要時間が 0分の地方道路があることにします。「どっ
からでもいい、とにかくロンドンに着けばいいんだ！」ということです。

RPN 電卓の問題を解いたときと同様に、この問題も三段階で解くことにし
ます。

1. Haskellのことはいったん忘れて、問題を手で解く方法を考えます。RPN
電卓のときは、問題をまず手で解いてみることで、どうやら人間が RPN
式を処理するときには頭の中にスタックのようなものを思い浮かべ、数式
のアイテムを 1つずつ処理していくようだ、と気がついたのでした。

oyaji (20170810-501DAE64)

218 第 10章 関数型問題解決法

2. そのデータ構造を Haskellでどう表現しようか考えます。RPN電卓の場
合は、文字列のリストを使って数式を表現することにしたのでした。

3. そのデータ構造を Haskell で操作して、解を得る方法を考えます。電卓
の場合は、左畳み込みを使って文字列のリストを走査しながら、スタック
を更新していって解を得たのでした。

最速経路を計算する
さて、ヒースローからロンドンまでの最速経路を手で計算するにはどうしたら

いいでしょう？ ええと、絵を眺め、心眼を働かせ、勘が当たっていることを祈
る、という手もありますね。その解法は、ごく小さい入力に対してはうまくいき
ます。でもセクションが 1万個あるような道路網だったら？ お手上げです！ し
かも勘で決めた経路では、最短であるという保証がどこにもありませんね。ま
あ、あたらずとも遠からず、ぐらいでしょうか。つまり、これは良い解法ではな
いわけです。
これは道路網の絵をシンプルにしたものです。

幹線道路 A の第一交差点 A1 までの最短経路は分かりますか？ これは簡単で
すね。ヒースローから Aを真っすぐ行くのか、 Bを行ってから Aへ乗り換える
のか、どちらが早いかさえ比べれば分かります。明らかに B を行ってから乗り
換えるほうが早いです。そっちは 40分ですが、 Aを真っすぐ行くのは 50分か
かります。では、 B1はどうでしょう？ こちらは、 Bを真っすぐ行く（所要時間
10分）ほうがずっと早いですね。なにしろ Aを走ってから乗り換えるのでは 80
分もかかります！
これで A1 までの最短経路が分かりました。 B を通って進み、それから A へ
乗り換える。この経路を B, Cと表すことにしましょう（ Cは crossの頭文字で
す）。この経路のコストは 40分です。また B1への最短経路も分かりました。 B

oyaji (20170810-501DAE64)

10.2 ヒースロー空港からロンドンへ 219

を真っすぐ進むことです。これは B単体からなる経路で、そのコストは 10分で
す。この知識は、次の交差点までの最短距離を求めるのに役立つでしょうか？
もちろん、とっても役立ちます！
では、 A2までの最短経路を求めてみましょう。 A2に行くには、 A1から A2

へ直行するか、 B1から前に進んで乗り換えるかの 2通りがあります（僕らは前
か横にしか動けませんでしたよね）。

NOTE もしかして「あれっ？ A2に行くのに、 B1で乗り換えて、それから前進するのは？」
と思った？ 残念！ B1から A1への経路は A1までの最短経路を探索するときにすで
に考慮したので、次のステップでまた考える必要はありませんでした。

A1までと B1までのコストはもう知っているのですから、 A2までの最短経路
は簡単に計算できます。 A1までは 40分で、 A1から A2までは 5分なのですか
ら、この経路 B, C, Aのコストは 45です。一方、 B1までの所要時間はわずか
10 分ですが、そこから B2 へ進んで乗り換えるのには 110 分もかかってしまい
ます！ これはもう明らかに、 A2までの最短経路は B, C, Aです。同じように
して、 B2までの最短経路は、 A1から前へ進み、それから乗り換えることです。
こうして A2と B2への最短経路が得られました。同じことを繰り返せば最後
まで行けます。そうやって、 A4と B4への最短経路を求めれば、そのうちで所
要時間が少ないものが最も良い経路です。

2つ目のセクションでやったことは、本質的には 1つ目のセクションでやった
ことの繰り返しですが、直前の A または直前の B を使う最短経路を考慮してい
ます。1つ目のセクションでも、ある意味では、直前の Aと Bまでの最短経路を
使ったと言えます。2つとも空の経路でありコストは 0分であった、と考えれば
いいわけです。
まとめると、ヒースロー空港からロンドンまでの最短経路を求めるアルゴリズ
ムはこうなります。

1. 幹線道路 A のヒースロー空港から 1 つ目の交差点までの最短経路は何か
を求めます。選択肢は、直接 Aを進むか、Bからスタートして乗り換える
かの 2つです。この経路とそのコストを記録します。

2. 同じ手続きで、幹線道路 Bの最初の交差点までの最短経路を求めて記録し
ます。

3. 幹線道路 Aの、さらに次の交差点までの経路は、幹線道路 Aの直前の交差
点から真っすぐ進むのが早いか、直前の Bの交差点から真っすぐ進んで乗
り換えるのが早いか調べて、早いほうを採用します。逆側の交差点につい
ても同じことをします。

4. これを目的地まで繰り返します。

oyaji (20170810-501DAE64)

220 第 10章 関数型問題解決法

5. 目的地まで繰り返したら、2つの経路のうち早いほうが僕らのとるべき最
短経路です。

というわけで、幹線道路 Aと Bの最短経路を 1つずつ覚えておけばよいわけ
です。そうやって目的地までいったら、2つのうちの早いほうが求めていた経路
です。
さて、最短経路を手で求める方法は分かりました。もし十分な時間と、紙と鉛

筆があれば、どんなに多くのセクションがある道路網でも最短経路を求められる
ことでしょう。

道路網をHaskell で表現する
どうすればこの道路網を Haskellのデータ型で表現できるでしょう？
手で解いたときを思い出すと、3つの所要時間を 1組として調べていたのでし

た。幹線道路 Aのあるパーツ、幹線道路 Bの同じパーツ、そして 2つのパーツ
と接続し橋渡しをしているパーツ C です。 A1と B1への最短経路を求めたとき
は、最初の 3つのパーツの所要時間（50分、10分、および 30分）だけを使い
ました。この 3つ組を「Section」と呼びましょう。こうして、この例題に出て
くる道路網は、4 つの Section の集まりとして簡単に表現できるようになりま
した。s 50, 10, 30s 5, 90, 20s 40, 2, 25s 10, 8, 0

データ型はできるだけシンプルにしましょう（でもシンプルならいいってわけ
じゃないですよ！）。これが僕らの道路網のデータ型です。

data Section = Section { getA :: Int, getB :: Int, getC :: Int }

deriving (Show)

type RoadSystem = [Section]

十分にシンプルだし、僕らの解を実装するのにはうってつけな気がしますね！
Sectionは 3つの道路パーツの所要時間に対応する整数を保持する単純な代

数データ型です。道路網 RoadSystemは道路 Sectionのリストである、という
型シノニムも導入することにします。

NOTE 道路 Section をトリプル (Int, Int, Int) で表すという手もあったかもしれませ
ん。独自の代数データ型を作る代わりにタプルを使う選択のほうが、影響が小さく、
局所的なものを表すには優れています。しかし、より複雑なものを表現するには新し

oyaji (20170810-501DAE64)

10.2 ヒースロー空港からロンドンへ 221

い型を作るほうが適切です。そうするほうが、どの値が何なのか、型システムにより
多くの情報を与えられます。 (Int, Int, Int)は、道路のセクションのほか三次元
空間のベクトルを表すのにも使え、その両者に対する演算も可能ですが、それでは両
者を混同する恐れがあります。 Sectionと Vectorというデータ型を使えば、うっか
り三次元ベクトルを道路セクションに加算することはなくなります。

ヒースロー空港からロンドンまでの道路網はこう表せます。

heathrowToLondon :: RoadSystem
heathrowToLondon = [Section 50 10 30

, Section 5 90 20
, Section 40 2 25
, Section 10 8 0
]

あとは Haskellで解を実装するだけです！

最短経路関数を求めよ！
どんな道路網に対しても最短経路が計算できる関数は、どんな型宣言にすれば

いいでしょう？ その関数は、道路網を引数として取って経路を返すべきです。
経路もリストとして表現しましょう。

A 、 B 、 C を列挙しただけの Label 型を導入することにします。それから、
Pathという名前の型シノニムを作りましょう。

data Label = A | B | C deriving (Show)
type Path = [(Label, Int)]

ということで、これから作る関数 optimalPathの型はこうなるはずです。

optimalPath :: RoadSystem -> Path

heathrowToLondon という名の道路網を引数にして呼び出したら、こういう
経路を返すべきです。

[(B,10),(C,30),(A,5),(C,20),(B,2),(B,8)]

道路 A での最短経路と道路 B での最短経路を保持しながら、セクションのリ
ストを左から右へと辿っていきましょう。リストを辿りながら、最善の経路をた
めていく。これって何でしょう？ 3、2、1、……はい時間です！ 正解は左畳み
込み！
手計算で解を求めたときは、あるステップを何度も何度も繰り返しました。直
前の Aと Bまでの最適経路、それに現在の道路セクションをもとに、 Aと Bの
新しい最適経路を求めるというステップです。開始時点で A と B に対応する最
適経路は、それぞれ []と []です。そして Section 50 10 30というセクショ
ンを読み込み、 A1 への最適経路は [(B,10),(C,30)] であり、 B1 への最適経

oyaji (20170810-501DAE64)

222 第 10章 関数型問題解決法

路は [(B,10)]である、ということを求めました。この手続きを関数視点で見る
と、経路のペアとセクションを引数に取って新しい経路のペアを返す関数になっ
ています。ということは、その型はこうです。

roadStep :: (Path, Path) -> Section -> (Path, Path)

この関数を実装してみましょう。きっと役に立つはずです。

roadStep :: (Path, Path) -> Section -> (Path, Path)
roadStep (pathA, pathB) (Section a b c) =

let timeA = sum (map snd pathA)
timeB = sum (map snd pathB)
forwardTimeToA = timeA + a
crossTimeToA = timeB + b + c
forwardTimeToB = timeB + b
crossTimeToB = timeA + a + c
newPathToA = if forwardTimeToA <= crossTimeToA

then (A, a):pathA
else (C, c):(B, b):pathB

newPathToB = if forwardTimeToB <= crossTimeToB
then (B, b):pathB
else (C, c):(A, a):pathA

in (newPathToA, newPathToB)

何をしてるのでしょうか？ まず、そ
こまでの A の最適経路の所要時間を
求めます。 B についても同じです。
これには sum (map snd pathA) とい
う関数を使います。例えば pathA が
[(A,100),(C,20)]だったら、timeAは
120になります。

forwardTimeToAは、幹線道路 Aの直
前の交差点から次の交差点まで真っすぐ
進んだときの所要時間です。これは、直
前の A までの所要時間と、現在のセクションの A パーツの所要時間の和に等し
いはずです。

crossTimeToAは、道路 A の次の交差点まで、道路 Bを直進してから乗り換
える、という経路を選んだ場合の所要時間です。これは、直前の Bまでの所要時
間に、現在のセクションの B の所要時間と C の所要時間を足したものに等しく
なるはずです。

forwardTimeToBと crossTimeToBも、同様にして求めます。
これで Aと Bへの最短経路が分かりましたから、あとは Aと Bへの新しい経
路を生成するだけです。もし、次の Aまで行くのに、ただ直進するほうが早けれ
ば、 newPathToAを (A, a):pathAに設定します。 Aという Labelと、 aの所

oyaji (20170810-501DAE64)

10.2 ヒースロー空港からロンドンへ 223

要時間を、直前の Aまでの最適経路に追加しています。「次の Aまでの最短経路
は、直前の交差点 Aまで最短経路で行って、それから Aを直進することだよ！」
と言いたいわけです。 Aはただのラベルです。一方、 aは Int型であることを
忘れないでくださいね。
なぜ、 pathA ++ [(A, a)]としないで、要素を前から追加しているのでしょ
うか？ リストの先頭に要素を追加するのは、リストの末尾に追加するよりも
ずっと速いんです。前に追加しているため、この関数でリストを畳み込んで出て
きた経路は逆向きになってしまいますが、最後に逆順にするのは簡単です。
もし Aの次の交差点に行くのに Bを直進してから乗り換えるほうが早ければ、

newPathToAは、直前の Bまで行き、そこから直進して Aへ乗り換えるものにな
ります。 newPathToBについても同じことを繰り返します。ただし、 Aと B、 a

と bはすべて反対にします。
最後に、 newPathToAと newPathToBをペアにして返します。
では、この関数を heathrowToLondon の最初のセクションについて走らせて
みましょう。最初のセクションなので、直前の A と B への最短経路に対応する
引数は空リストのペアになります。

ghci> roadStep ([], []) (head heathrowToLondon)
([(C,30),(B,10)],[(B,10)])

経路は逆転しているので、右から左へ読むのでしたよね。次の交差点 A まで
の最短距離は、 Bからスタートして Aに乗り換えることだと分かります。一方、
次の Bまでの最短経路は、単に Bを直進することです。

NOTE この roadStepの実装では、timeA = sum (map snd pathA)とするときに経路の所
要時間を毎回計算しています。 Aと Bの最短経路だけでなく、最短の所要時間を引数
に取ったり返したりする仕様にしておけば、この計算は必要ありませんでしたね。

経路のペアとセクションを取って最適経路を返す関数ができたところで、セク
ションのリストに左畳み込みを施すのは簡単です。 roadStepは、 ([], [])と
最初のセクションを引数にして呼ばれ、そのセクションまでの最適経路を求めま
す。次に、その最適経路と次のセクションを引数に roadStepがまた呼ばれて、
と続きます。すべてのセクションを歩き終わったら、最後に最適経路のペアが残
ります。そして、2 つのうちの短いほうが答です。これを念頭に optimalPath

を実装しましょう。

oyaji (20170810-501DAE64)

224 第 10章 関数型問題解決法

optimalPath :: RoadSystem -> Path
optimalPath roadSystem =

let (bestAPath, bestBPath) = foldl roadStep ([], []) roadSystem
in if sum (map snd bestAPath) <= sum (map snd bestBPath)

then reverse bestAPath
else reverse bestBPath

この関数では、空リストのペアを初期アキュムレータとして、 roadSystem

（これはセクションのリストでしたね）を左畳み込みしています。その結果は経
路のペアですから、パターンマッチを使って 2つの経路の本体を取り出します。
それからどちらの所要時間が短いかを判定して返します。経路リストの後方で
はなく前方へ追記していく実装を選んだことから、この時点での経路は逆転して
いるので、返す前に逆順にしています。
では試してみましょう！

ghci> optimalPath heathrowToLondon
[(B,10),(C,30),(A,5),(C,20),(B,2),(B,8),(C,0)]

これがまさに欲しかった結果です！ あ、期待していた結果とはちょっと違い
ますね。なんか、最後に (C,0) とかいうステップが付いてます。ロンドンに着
いてから反対の道に乗り換えろ、と。この乗り換えには時間がかからないことに
なってるので、これで正解です。

入力から道路網を受け取る
最短経路を求める関数はできました。あとはテキスト形式で表現された道路

網を標準入力から読み込んで RoadSystem型に変換し、 optimalPath関数にか
けて、得られた経路を表示するだけです。
まず、リストを取り、ある要素数のグループごとに分割する関数を作りましょ
う。名づけて groupsOfです。

groupsOf :: Int -> [a] -> [[a]]
groupsOf 0 _ = undefined
groupsOf _ [] = []
groupsOf n xs = take n xs : groupsOf n (drop n xs)

[1..10]という引数に対して、 groupsOf 3の結果はこうなるはずです。

[[1,2,3],[4,5,6],[7,8,9],[10]]

見てのとおり、 groupsOf は標準的な再帰関数です。 groupsOf 3 [1..10]

とするのは、こうするのと同じです。

[1,2,3] : groupsOf 3 [4,5,6,7,8,9,10]

oyaji (20170810-501DAE64)

10.2 ヒースロー空港からロンドンへ 225

再帰が完了したとき、入力リストは 3つずつの組になって得られます。いよい
よこれが、標準入力を読み取って RoadSystemを作り、最短経路を出力するメイ
ン関数です。

import Data.List

main = do
contents <- getContents
let threes = groupsOf 3 (map read $ lines contents)

roadSystem = map (\[a,b,c] -> Section a b c) threes
path = optimalPath roadSystem
pathString = concat $ map (show . fst) path
pathTime = sum $ map snd path

putStrLn $ "The best path to take is: " ++ pathString
putStrLn $ "Time taken: " ++ show pathTime

まず、標準入力からすべてのコンテンツを読み込みます。それから、このコン
テンツに linesを適用してきれいな形にします。例えば "50\n10\n30\n ..."

だったら ["50","10","30" ...] になります。次にそれを read で写して、数
のリストに変えます。さらに groupsOf 3を適用し、長さ 3のリストのリストに
変えます。さらに、その二重リストをラムダ式 (\[a,b,c] -> Section a b c)

で写します。
見てのとおり、ラムダ式は長さ 3のリストを取って道路セクションに変えてい
ます。この結果、 roadSystemは解きたい道路網となり、正しい型 RoadSystem

（あるいは [Section]）を持ちます。これに optimalPathを適用し、経路と総
所要時間を適切なテキスト形式に変えて、表示します。
以下のような文字列を paths.txtというファイルに保存してください。

50
10
30
5
90
20
40
2
25
10
8
0

そして僕らのプログラムに食わせましょう。

$ runhaskell heathrow.hs < paths.txt
The best path to take is: BCACBBC
Time taken: 75

みごとに動きました！

oyaji (20170810-501DAE64)

226 第 10章 関数型問題解決法

Data.Random モジュールの知識を使って、もっと長い道路網を生成し、今
作ったばかりのコードに食わせてみてください。もしスタックオーバーフロー
が出たら、 foldlを foldl'に変え、 sumを foldl' (+) 0に変えてみましょ
う。または、実行する前にこうやってコンパイルしてみてください。

$ ghc --make -O heathrow.hs

コンパイル時に Oフラグを含めると、最適化が働いて、 foldlや sumといっ
た関数がスタックオーバーフローしにくくなります。

oyaji (20170810-501DAE64)

第11章
ファンクターから

アプリカティブファンクターへ

純粋性、高階関数、型引数を取る代数的データ型（parameterized algebraic
data types）、型クラスを兼ね備える Haskellでは、他のプログラミング言語よ
りずっと簡単に多相性を実装できます。型の巨大な階層構造に気をもむ必要は
ありません。その代わり、これらの型はどのように振る舞うか？ と考えて、適
切な型クラスに関連付ければよいのです。例えば、 Intはさまざまな「もの」の
ように振る舞います。同じかどうか判定できるもの、順序が付いたもの、列挙で
きる（数え上げられる）もの、などなど。
型クラスはオープンです。つまりデータ型を定義し、その型がどう振る舞うか

を考えてから、その振る舞いを定義する型クラスに属させることができるので
す。このオープンな型クラスと、関数の型宣言だけから多くのことを読み取れる
Haskellの強力な型システムのおかげで、とても一般的で抽象的な振る舞いを定
義する型クラスが作れます。
これまでに、2つのものが等しいかどうか判定する操作や、2つのものを何ら

かの順序で比較する操作を定義する型クラスを見てきました。こう言うと抽象
的で高尚に聞こえますが、等号とか比較って日常的に使う操作で、とりわけ特別
なことではないですよね。それから、第 7章ではファンクターを紹介しました。
ファンクターは、関数を使って全体を写せるもの、という感じでした。これもま
た型クラスを使って定義できる、便利で、それでいてかなり抽象的な性質の 1つ
です。この章では、ファンクターをより詳しく見ていきます。そして、ファンク
ターの少し強力でより便利なバージョンであるアプリカティブファンクターも
紹介します。

227

oyaji (20170810-501DAE64)

228 第 11章 ファンクターからアプリカティブファンクターへ

11.1 帰ってきたファンクター
第 7章で学んだように、ファンクターとは関数で写せるもののことです。例え

ば、リスト、 Maybe、木などがファンクターです。Haskellでは、ファンクター
は型クラス Functorで表現されます。ファンクターの型クラスメソッドは 1つ
だけで、それは fmap です。 fmap の型は fmap :: (a -> b) -> f a -> f b

です。この型の意味は「僕に『 aを取って bを返す関数』と、 aの入った箱を渡
して。そしたら b の入った箱にして返すよ」という感じです。箱 f の中の要素
に関数を適用してくれるのですね。
ファンクターは、文脈を持った値だとみなすこともできます。例えば、 Maybe

値は「計算が失敗したかもしれない」という文脈を、リストは「複数の値を同時
にとるかもしれない」という文脈を持ちます。 fmapは、こういった文脈を保っ
たまま関数を値に適用するのです。
型コンストラクタを Functorのインスタンスにするには、その型コンストラ

クタの種類（kind）は * -> *でないといけません。つまり、その型コンストラ
クタは、型変数として具体型をただ 1つ取る必要があります。例えば Maybeは、
Maybe Intや Maybe String のように 1つの型変数を取って具体型を生むので、
ファンクターになれます。これに対し、 Eitherのような 2つの型変数を取る型
コンストラクタをファンクターにするには、部分適用をして、あと 1つだけ型変
数を引数に取る状態にしないといけません。というわけで、instance Functor

 Either whereは間違いですが、instance Functor (Either a) whereは正
しいインスタンス宣言です。そして、fmapは Either aに働くのだと考えれば、
次のような型になることが分かります。

fmap :: (b -> c) -> Either a b -> Either a c

fmapの前後で Either aの部分は不変であり、 Either aのただ 1つの変数
の部分が変化しています。

ファンクターとしての I/Oアクション
これまで実に多くの型（えーと正確に言えば型コンストラクタ）が Functor

のインスタンスであることを見てきました。 []、 Maybe、 Either a、それか
ら第 7章で作った Treeなどです。 a -> b型の関数を使って [a]、 Maybe a、
Either a1 a、 Tree aなどの型をも写せるのはとても便利でした。今度は IO

インスタンスを見てみましょう。
例えば、 IO Stringという型は、実行すると、外の世界に出かけていって文
字列を取ってきてくれて、それを返してくれるような I/Oアクションを表して

oyaji (20170810-501DAE64)

11.1 帰ってきたファンクター 229

います。取得結果は、 do記法の中で <-構文を使って名前に束縛できます。第
8章では、I/Oアクションとは小さな足のはえた箱で、外の世界に出かけていっ
て何か値を入れて帰ってきてくれるのだ、という比喩を使いました。僕らは IO

が取ってきてくれた値を調べることができますが、調べた後はまた IOの中に戻
さなくてはいけません。この「足のはえた箱」の例えで、 IOがファンクターの
一種であることが理解できます。

IO の Functor インスタンスがどのように定義されているか見ていきましょ
う。ある関数をある I/Oアクションに fmapすると、「元の I/Oと同じことをし
つつ、その結果に指定した関数を適用して返す」I/Oアクションになってほしい
わけです。これが実装です。

instance Functor IO where
fmap f action = do

result <- action
return (f result)

I/Oアクションを関数で写した結果もまた I/Oアクションなので、まずは脊
髄反射的に do 構文を使います。この中で 2 つのアクションを貼り付けて新し
い I/O アクションを作ればいいはずです。 fmap を実装するには、まずもとも
との I/Oアクションを実行して結果を resultと名づけます。次に return (f

 result)を行います。 return とは、ご存知のとおり「特に仕事を行わず、た
だ何かを結果として提示する I/Oアクション」を作る関数です。

doブロックで組み立てたアクションは常に最後のアクションの結果を提示し
ます。ですので、 returnを使って仕事をしないアクションを作り、 f result

を do ブロック全体の結果として提示させるわけです。このコードを見てくだ
さい。

main = do line <- getLine
let line' = reverse line
putStrLn $ "You said " ++ line' ++ " backwards!"
putStrLn $ "Yes, you said " ++ line' ++ " backwards!"

ユーザに文字列を入力してもらい、それを逆順にして表示しています。これは
fmapを使うとこう書けます。

main = do line <- fmap reverse getLine
putStrLn $ "You said " ++ line ++ " backwards!"
putStrLn $ "Yes, you really said " ++ line ++ " backwards!"

Just "blah" を fmap reverse して Just "halb" を作るのと同じように、
getLine を fmap reverse できるのです。 getLine は IO String の型を持つ
I/O アクションですから、それを fmap reverse すると、外の世界に出かけて
いって文字列を 1行入力してもらって、その結果に reverseを適用する I/Oア

oyaji (20170810-501DAE64)

230 第 11章 ファンクターからアプリカティブファンクターへ

クションになります。 Maybeという箱に入っている値に関数を適用できるのと
同様に、 IOという箱の中に入っている値に関数を適用できるわけですが、 fmap

した結果も IOなので、そいつもやはり外の世界に出かけていって何か値を取っ
てくるという動作をするわけです。その後、 reverseを適用済みの値を、 <-を
使って lineという名前に束縛しています。

ほかにも、 fmap (++"!") getLine とい
う I/Oアクションは getLineとほぼ同じ動
作をしますが、入力された文字列の末尾に
"!"を付けます!
仮に fmap が IO に限定されていたら、

fmap の型は fmap :: (a -> b) -> IO a

-> IO b になります。 fmapは、a -> bな
関数と IO a な I/O アクションを取って、
「それとよく似た動作をして中身の値に関数

を適用するような I/Oアクション」を返す関数です。
もし自分のコードに、何らかの関数に渡すだけのために I/Oの結果に名前を
つけている箇所があったら、 fmapを使ってみてください。そのほうがきれいに
書けます。もしファンクターの中身を、1つではなく複数の関数を使って写した
いなら、そのための関数をトップレベルで宣言してもいいし、ラムダ式を使って
もいいですが、一番いいのは関数合成です。

import Data.Char
import Data.List

main = do line <- fmap (intersperse '-' . reverse . map toUpper)
getLine

putStrLn line

このコードを走らせて hello thereという入力を与えるとこうなります。

$./fmapping_io
hello there
E-R-E-H-T- -O-L-L-E-H

ここで intersperse '-' . reverse . map toUpper という関数は、文字
列を取って、各文字を toUpper し、その結果に reverse を適用し、さらに
intersperse '-' を適用しています。以下のように書いても同じ意味ですが、
関数合成のほうがきれいに書けますね。

(\xs -> intersperse '-' (reverse (map toUpper xs)))

oyaji (20170810-501DAE64)

11.1 帰ってきたファンクター 231

ファンクターとしての関数
Functorのインスタンスだとは知らずに、何気なくずっと使ってきたものが

もう 1つあります。その Functorは、 (->) rです。えっ、 (->) rって何のこ
と？ どういう意味？ 関数の型を表す r -> aは、 (->) r aと書き換えること
もできるのです。ちょうど 2 + 3を (+) 2 3と書き直せるように。むしろ便利
でしょう？ 関数の型を (->) r aと表現するとき、関数 (->)には、2つの型引
数を取る型コンストラクタという新しい姿が与えられているのです。 Eitherと
同じです。
ただし、 Functorのインスタンスにする型コンストラクタは引数が 1つであ
る必要があります。だから、 (->) という形のままでは Functor にはできませ
ん。部分適用して (->) rの形にすれば大丈夫です。セクションが使えれば、型
コンストラクタの部分適用 (->) rを (r ->)と書きたいところですが、これは
文法的にまずいです（関数の部分適用では、例えば +の部分適用を律儀に (+) 2

と書かずにセクションを使って (2+)と書けましたね）。
さて、関数がファンクターであるとはどういうことなのでしょうか？

Control.Monad.Instances にあるインスタンス宣言の実装を覗いてみま
しょう。

instance Functor ((->) r) where
fmap f g = (\x -> f (g x))

まず、 fmapの型を思い出してください。

fmap :: (a -> b) -> f a -> f b

ファンクターのインスタンスは上記の f の場所に入るので、頭の中で f を
(->) rに置換してみてください。すると、関数をファンクターのインスタンス
にしたとき fmapがどのような型になるかが分かります。

fmap :: (a -> b) -> ((->) r a) -> ((->) r b)

さらに、 (->) r a と (->) r b という表記を、普通の中置表記 r -> a と
r -> bに直しましょう。

fmap :: (a -> b) -> (r -> a) -> (r -> b)

fmapを使うと、 Maybeは Maybeを生み出し、リストはリストを生み出しま
した。 Functorとしての関数も、関数を取って関数を生み出すはずです。なら
ば、型 fmap :: (a -> b) -> (r -> a) -> (r -> b) が意味するものとは？
この型は、 aから bへの関数と、 rから aへの関数を引数に取り、 rから bへ
の関数を返す、と読めます。何か思い出しませんか？ そう！ 関数合成です！

oyaji (20170810-501DAE64)

232 第 11章 ファンクターからアプリカティブファンクターへ

r -> a の出力を a -> b の入力につなぎ、関数 r -> b を作る。これってまさ
に、関数合成ですね。このインスタンス宣言はこう書いてもかまいません。

instance Functor ((->) r) where
fmap = (.)

こう書くと、 fmap が関数ファンクターの場合には関数合成を意味す
ることがはっきりしますね。関数ファンクターのインスタンス定義は
Control.Monad.Instancesから読み込めるので、試しに使ってみましょう。

ghci> :m + Control.Monad.Instances
ghci> :t fmap (*3) (+100)
fmap (*3) (+100) :: (Num a) => a -> a
ghci> fmap (*3) (+100) 1
303
ghci> (*3) ‘fmap‘ (+100) $ 1
303
ghci> (*3) . (+100) $ 1
303
ghci> fmap (show . (*3)) (+100) 1
"303"

入力の 4行目では、fmapを中置関数として呼んでいます。こうすると、fmap

と .が同じだってことがはっきりしますね。入力の 3行目では、(*3)で (+100)

を写しています。その結果は「入力を (+100)して (*3)する関数」になります。
それをさらに 1に作用させると、答は 303になります。
他のファンクターと同様、関数ファンクターも文脈を持った値だとみなせま
す。 Maybeとの対比で考えてみましょう。 Maybeファンクターは、「値がある
かもしれない」という文脈を表し、具体化した Maybe aは「 a型の値があるか
もしれない」という文脈でした。それに対し、関数ファンクター (->) r（ある
いは r ->）は、「 r型の入力を適用すれば結果が返ってくる」という文脈を表
し、それを具体化した (->) r a（あるいは r -> a）は、「 r型の入力を適用
すれば a型の結果が返ってくる」という文脈を表しています。
例えば関数 (+3) :: Int -> Int は、その関数の返り値である Int 型の値
に、「結果が欲しくば Int 型に適用しろ」という文脈が付いたものとみなせま
す。 fmap (*3)を (+100) に使うと、 (+100)の処理をした後で結果を返す前
に (*3)を適用する、新しい関数が生まれます。

fmap を関数に適用すると関数合成になるというのは、今のところあまり役
に立ちませんが、興味をひかれる事実です。これについて深く考えると、 IOや
(->) rのように箱というよりは計算のように振る舞うものがファンクターにな
れる理由が分かってきます。「ある関数」を使って「何らかの計算」を写すと、得
られるものは「似たような計算」ですが、計算結果はその「関数」で修飾された
ものになっているのです。

oyaji (20170810-501DAE64)

11.1 帰ってきたファンクター 233

さて、 fmapが従うルールの説明に移る前に、もう一度 fmapの型について考
えておきましょう。

fmap :: (Functor f) => (a -> b) -> f a -> f b

第 5章では、Haskellの関数は実はすべて
1引数関数とみなせる、というカリー化の概
念を導入しました。 a -> b -> c型の関数
は、 a 型の引数を 1 つだけ取る関数で、返
り値は b -> c型の関数です。これがまた 1
つだけ引数を取って、 c型の値を返します。
これを、多引数関数を認める立場から見れ
ば、ある関数を一部の引数しか与えないで呼
び出す（部分適用）と「残りの引数を取って
最終結果を返す関数」を返す、と説明できま
す。そこで、a -> b -> c型は a -> (b -> c)と書けます。こうするとカリー
化がはっきり分かりますね。
同じように、 fmap :: (a -> b) -> (f a -> f b)の型を持つ fmapも、関
数とファンクター値を取ってファンクター値を返す 2 引数関数とも思えますが、
そうじゃなくて、関数を取って「元の関数に似ているけどファンクター値を取っ
てファンクター値を返す関数」を返す関数だと思うこともできます。 fmap は、
関数 a -> b を取って、関数 f a -> f b を返すのです。こういう操作を、関
数の持ち上げ（lifting）といいます。このようなファンクターの見方について、
GHCiの :tコマンドを使って遊びながら覚えましょう。

ghci> :t fmap (*2)
fmap (*2) :: (Num a, Functor f) => f a -> f a
ghci> :t fmap (replicate 3)
fmap (replicate 3) :: (Functor f) => f a -> f [a]

式 fmap (*2)は、数が入っているファンクター fを取って、数が入っている
ファンクターを返す関数です。ファンクターは、リストでも Maybeでも Either

 Stringでも何でもかまいません。また、式 fmap (replicate 3)は、「何でも
いい型 a 」が入っているファンクター」を取り、 a のリストが入っているファ
ンクターを返します。このことは、例えば fmap (++"!") のような部分適用を
作って、それを GHCiで名前に束縛してみるとよく分かります†1。

†1 ［訳注］Haskellの困った仕様の 1つ、単相性制限のせいで、引数の型に型クラス制約がある関数は、うま
く扱えない場合があります。 NoMonomorphismRestrictionオプションを使えばこの制限を解除でき
ます。GHCiでは :set -XNoMonomorphismRestrictionとします。 .hsファイルの中で関数を定
義しようとしてこのエラーに出くわした場合は、関数に型クラス制約を含む型注釈をきっちり与えるか、あ
るいはファイルの先頭に {-# LANGUAGE NoMonomorphismRestriction #-}を追加してください。

oyaji (20170810-501DAE64)

234 第 11章 ファンクターからアプリカティブファンクターへ

ghci> :set -XNoMonomorphismRestriction
ghci> let shout = fmap (++"!")
ghci> :t shout
shout :: Functor f => f [Char] -> f [Char]
ghci> shout ["ha","ka","ta","no"]
["ha!","ka!","ta!","no!"]

というわけで、 fmapについては 2通りの考え方ができます。s fmapは関数とファンクター値を取って、その関数でファンクター値を写
して返すものである。s fmapは値から値への関数を取って、それをファンクター値からファンク
ター値への関数に持ち上げたものを返す関数である。

そして、どちらの見方も正しいのです。「関数でファンクター値を写す」こと
と、「関数を持ち上げてからファンクター値に適用する」ことは等価です。
例えば、関数 fmap (replicate 3) は、その型が fmap (replicate 3) ::

(Functor f) => f a -> f [a] であることから分かるように、どんなファ
ンクターにでも適用できます。 そして、何が起こるかはそのファンクターに
よって変わります。リストに対して fmap (replicate 3)すれば、リスト向け
の fmapの実装が選ばれて、それは普通の mapです。 Maybe aに対して fmap

(replicate 3)とすれば、 Justの中の値に対して replicate 3が適用されま
す。 Nothingなら Nothingです。いくつか例を示します。

ghci> fmap (replicate 3) [1,2,3,4]
[[1,1,1],[2,2,2],[3,3,3],[4,4,4]]
ghci> fmap (replicate 3) (Just 4)
Just [4,4,4]
ghci> fmap (replicate 3) (Right "blah")
Right ["blah","blah","blah"]
ghci> fmap (replicate 3) Nothing
Nothing
ghci> fmap (replicate 3) (Left "foo")
Left "foo"

11.2 ファンクター則
すべてのファンクターの性質や挙動は、ある一定の法則に従うことになって

います。 fmap fをファンクターに適用したら、それはファンクターの中身に f

を適用するべきであって、それ以上のことをしてはいけないのです。この挙動
はファンクター則に記述されています。 Functorのインスタンスは、ファンク
ター則の 2つの性質を満たしている必要があります。残念ながら、Haskellには
自動的にファンクター則を課してくれるような機能はありませんので、ファンク

oyaji (20170810-501DAE64)

11.2 ファンクター則 235

ターを自作するときは、ファンクター則を満たしているか、自前でテストしない
といけません。標準ライブラリにある Functorたちは、すべてファンクター則
を満たしています。

第一法則
ファンクターの第一法則は、「 id でファンクター値を写した場合、ファンク

ター値が変化してはいけない」というものです。式で書くと fmap id = id っ
てことです。別の言い方をすれば、 fmap idをファンクター値に適用した場合、
それは id をファンクター値に適用したのと同じ結果になる、ということです。
idは恒等写像、引数をそのまま返すだけの関数でしたね。 idは、 \x -> xと
も書けます。ファンクターは中身に関数が適用されるようなものであると思え
ば、 fmap id = idという法則は、何だか自然で当たり前のものに思えますね。
さて、第一法則が満たされているか、いくつかのファンクターで試してみま

しょう。

ghci> fmap id (Just 3)
Just 3
ghci> id (Just 3)
Just 3
ghci> fmap id [1..5]
[1,2,3,4,5]
ghci> id [1..5]
[1,2,3,4,5]
ghci> fmap id []
[]
ghci> fmap id Nothing
Nothing

例えば Maybeファンクターに対する fmapの実装を見てみると、どうやって第
一法則が満たされているのかが分かります。

instance Functor Maybe where
fmap f (Just x) = Just (f x)
fmap f Nothing = Nothing

さて、 fに idを代入したところをイメージしてみてください。 idで Maybe

ファンクター値を写すとき、 Maybe値の中身は Just値コンストラクタである場
合と Nothing値コンストラクタである場合があり得ます。
まず Justの場合、 fmap idを Just xに適用すると、 Just (id x)ができ

ます。そして idは恒等写像ですから、Just (id x)は Just xです。というわ
けで、 Justの場合は、確かに fmap idしたら元と同じ値が返ってくることが分
かりました。

oyaji (20170810-501DAE64)

236 第 11章 ファンクターからアプリカティブファンクターへ

次に、 id で Nothing を写した場合は、同じ値が返ってくることは明らかで
す。というわけで、 Maybe ファンクターの fmap を実装する 2 つの等式から、
Maybe ファンクターは確かにファンクター第一法則 fmap id = id を満たすこ
とが分かりました。

第二法則
第二法則は、関数合成と写す操作と

の間の関係です。第二法則は、2 つの関
数 f と g について、「 f と g の合成関
数でファンクター値を写したもの」と、
「まず g 、次に f でファンクター値を写
したもの」が等しいことを要求します。
式で書くと、 fmap (f . g) = fmap f

 . fmap g ってことです。別の言い方
をすると、すべてのファンクター値 x

に対して fmap (f . g) x = fmap f

(fmap g x) が成り立つべし、というの
が第二法則です。
ある型が 2つのファンクター則を満た
すということは、適用に関する基本的な
振る舞いが関数や他のファンクターと一
致することが保証される、ということです。その型に fmapを使ったときに、関
数によって写される以外の余計なことが裏で発生することはなく、あくまでも関
数の素直な拡張であるファンクターとして振る舞うことが分かるのです。
ある型がファンクター第二法則を満たすかどうかは、その型の fmapの実装を
見て、それから Maybeが第一法則を満たしているか調べたときと同じ方法を使
えば分かります。 Maybeファンクターが第二法則を満たしているか調べてみま
しょう。まず、 Nothingに対して fmap (f . g)を使うと、返り値は Nothing

になります。なにしろ、 Nothing に対して何を fmap しても Nothing ですか
ら。同じ理由から、fmap f (fmap g Nothing)を呼び出しても、結果はやはり
Nothingになります。

Maybeが第二法則を満たしているか調べるのは、 Nothing値の場合にはとて
も簡単でした。では、 Just 値の場合にはどうでしょう？ はい、まず fmap (f

 . g) (Just x) を評価してみます。これは実装から Just ((f . g) x) に
なりますが、これは Just (f (g x))です。次に fmap f (fmap g (Just x))

については、これまた実装に当てはめてみると、はじめに fmap g (Just x)

oyaji (20170810-501DAE64)

11.2 ファンクター則 237

の部分が評価されて Just (g x) になりますから、 fmap f (fmap g (Just

x)) は fmap f (Just (g x)) になります。さらに残りを評価すると、これは
Just (f (g x))に等しいことが分かります。
この証明は難しかったかもしれませんが、心配いりません。関数合成やファン
クター合成の感覚さえつかめれば大丈夫です。ある型が一種のコンテナや関数
として振る舞うことからファンクター則を満たすことが直感的に明らか、という
場合もよくあります。また、その型のさまざまな値でファンクター則を実験して
みて、ああ、確かにファンクター則が成り立っているようだな、と納得すること
もできます。

法則を破る
ここで、 Functorのインスタンスなのに、ファンクター則を満たしていない

ような病的な例を考えてみましょう。以下のような型を用意します。

data CMaybe a = CNothing | CJust Int a deriving (Show)

Cは「counter」のつもりです。 CMaybe aは、 Maybe aによく似たデータ型
ですが、 Just部分のフィールドが 1つではなく 2つあります。 CJustの 1つ
目のフィールドは常に Int型で、これが何らかのカウンタになります。2つ目の
フィールドの型 aは型引数で、aの型が何になるかは CMaybe aをどんな具体型
にしたいかによって決まります。この新しい型で遊んでみましょう。

ghci> CNothing
CNothing
ghci> CJust 0 "haha"
CJust 0 "haha"
ghci> :t CNothing
CNothing :: CMaybe a
ghci> :t CJust 0 "haha"
CJust 0 "haha" :: CMaybe [Char]
ghci> CJust 100 [1,2,3]
CJust 100 [1,2,3]

CNothing コンストラクタにはフィールドがありません。 CJust コンスト
ラクタには 2 つのフィールドがあり、最初のフィールドには整数を、2 つ目の
フィールドには任意の型の値を入れられます。では、この CMaybe を Functor

のインスタンスにしてみましょう。 fmapを使うたびに 2つ目のフィールドに関
数を適用しますが、その際にカウンタを増やす（つまり最初のフィールドに 1を
足す）という実装にします。

instance Functor CMaybe where
fmap f CNothing = CNothing
fmap f (CJust counter x) = CJust (counter+1) (f x)

oyaji (20170810-501DAE64)

238 第 11章 ファンクターからアプリカティブファンクターへ

Maybeのインスタンス実装に似ていますが、 fmapを空でない箱（ CJust値）
に使ったときは中身に関数を適用するだけでなくカウンタに 1を足す、というと
ころが違います。別に何の問題もなさそうですよね。では、使ってみましょう。

ghci> fmap (++"ha") (CJust 0 "ho")
CJust 1 "hoha"
ghci> fmap (++"he") (fmap (++"ha") (CJust 0 "ho"))
CJust 2 "hohahe"
ghci> fmap (++"blah") CNothing
CNothing

さて、 CMaybeはファンクター則を満たしているでしょうか？ 満たしていな
いことを証明するには 1つでも反例を挙げればよいので、とても簡単です。

ghci> fmap id (CJust 0 "haha")
CJust 1 "haha"
ghci> id (CJust 0 "haha")
CJust 0 "haha"

ファンクター第一法則によれば、 idでファンクター値を写した結果と、単に
idをファンクター値に適用した結果とは等しくなければならないのでした。上
記の例から分かるとおり、 CMaybeはこの性質を満たしていません。ですので、
CMaybeは Functorのインスタンスを自称してはいるものの、ファンクターでは
ないことになります。

CMaybe は、 Functor のインスタンスでありながらファンクター則を満たさ
ないため、 CMaybeをファンクターとして利用するコードはバグを生む可能性が
あります。ファンクターを利用するとき、複数の関数を合成してから写すのと、
複数の関数で次々に写すのとは、同じ結果を生まないといけないのです。しかし
CMaybeの場合は、ファンクターに適用された回数を記録しているので、合成と
写しの順番を入れ替えると結果が変わってしまいます。これはまずい！ CMaybe

にファンクター則を満たさせようと思ったら、 fmapを使ったときに Intフィー
ルドをいじってはいけないのです。
最初はファンクター則なんて意味が分からないし、不必要と思うかもしれませ

ん。でも、もしある型がファンクター則を両方とも満たすと分かれば、その型の
挙動についてある種の信頼がおけます。 fmapを使っても、その関数でファンク
ター値の「中身」が写されるだけで、それ以外のことは何も起こらないと確信で
きるのです。この前提のおかげで、より抽象的で応用の利くコードが書けます。
すべてのファンクターが満たしているはずの法則を根拠に、どんなファンクター
に適用しても間違いなく動作する関数を作れるからです。
ある型を Functorのインスタンスにしようと思ったら、ちょっと時間を割い
て、その実装がファンクター則を満たしているか確認してください。実装を 1行
ごとに追って法則が満たされているか確認したり、反例はないか探してみてくだ

oyaji (20170810-501DAE64)

11.3 アプリカティブファンクターを使おう 239

さい。多種多様なファンクターを扱ってファンクター経験値をためれば、それら
に共通する性質や振る舞いを認識できるようになって、ある型がファンクター則
を満たすかどうか直感的に分かるようになるでしょう。

11.3 アプリカティブファンクターを使おう
この節では、ファンクターの強化版で

あるアプリカティブファンクターを紹介
します。
ここまではファンクター値を写すため

に、もっぱら 1引数関数を使ってきまし
た。では、2 引数関数でファンクターを
写すと何が起こるのでしょう？
例えば、 Just 3に対して fmap (*)

(Just 3) とすると何が起こるでしょう
か？ Maybeの Functorインスタンスの
実装を見ると、 fmapの引数の関数が Justの中身に適用されることが分かりま
す。ですから fmap (*) (Just 3) は Just ((*) 3) になります。これはセク
ション記法を使うと Just (3 *) とも書けます。なんと！ Just の中に関数が
入ってしまいました！
関数がファンクター値の中に入っている例はもっとあります。

ghci> :t fmap (++) (Just "hey")
fmap (++) (Just "hey") :: Maybe ([Char] -> [Char])
ghci> :t fmap compare (Just 'a')
fmap compare (Just 'a') :: Maybe (Char -> Ordering)
ghci> :t fmap compare "A LIST OF CHARS"
fmap compare "A LIST OF CHARS" :: [Char -> Ordering]
ghci> :t fmap (\x y z -> x + y / z) [3,4,5,6]
fmap (\x y z -> x + y / z) [3,4,5,6] :: (Fractional a) =>
[a -> a -> a]

例えば、 (Ord a) => a -> a -> Orderingの型を持つ関数 compareを、文
字列のリストに対して fmap すると、 Char -> Ordering のリストが返ってき
ます。 compareが入力リストの文字列の各々に対して部分適用されたからです。
返り値が (Ord a) => a -> Orderingのリストにならなかったのは、 compare

に第一引数が部分適用された時点で、 aが Char型に決まるので、第二引数の a

も Charに限定されるからです。
このように、「多引数」関数でファンクター値を写すと、関数が入ったファン
クター値が返ってきます。これって何に使えるんでしょう？ 1つの使い道は、そ

oyaji (20170810-501DAE64)

240 第 11章 ファンクターからアプリカティブファンクターへ

の中身の関数を引数に取れるような型を持つ関数を fmapすることです。なにし
ろファンクター値の中身は、ファンクターを写そうとする関数にもれなく渡され
るのですから。

ghci> let a = fmap (*) [1,2,3,4]
ghci> :t a
a :: [Integer -> Integer]
ghci> fmap (\f -> f 9) a
[9,18,27,36]
ghci> fmap ($9) a
[9,18,27,36]

では、ファンクター値 Just (3 *) とファンクター値 Just 5 があったとし
て、 Just (3 *)から関数を取り出して Just 5の中身に適用したくなったとし
たらどうしましょう？ 実は、普通のファンクターを扱う限り、これは無理なん
です。普通のファンクターでできるのは、「通常の関数で」「ファンクターの中の
値を」写すことだけだからです。 \f -> f 9を fmapしたときの例では、ファン
クターでもあるリストの中の関数に引数を渡せてるように見えたかもしれませ
んが、あれはあくまでも、「 \f -> f 9という通常の関数でファンクター値を写
したところ、たまたま関数を取って引数を渡す機能を備えていた」というだけで
す。「ファンクターの中の関数」で「別のファンクターの中の値」を写すことは、
fmap の提供する機能では無理です。確かに、 Just コンストラクタをパターン
マッチして中の関数を取り出し、それを Just 5に fmapする、という手はあり
ます。でも、それは Maybe 限定の手段になってしまいますね。もっと、どんな
ファンクターにも使えるような一般的で抽象的なアプローチはないものでしょ
うか？

Applicativeちゃんと仲良くしてあげてね！
Control.Applicativeモジュールにある型クラス Applicativeに会いに行

きましょう！ 型クラス Applicativeは、2つの関数 pureと <*>を定義してい
ます。どちらもデフォルト実装は与えられていないので、ある型を Applicative

のインスタンスにしたかったら両方の定義を与える必要があります。クラス定
義はこんな感じです。

class (Functor f) => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

このたった 3行の短いクラス定義から、実にたくさんのことが分かります！ 1
行目では、 Applicativeクラスの定義を与えると同時に、型クラス制約を導入
しています。「ある型コンストラクタを Applicative 型クラスに属させたかっ

oyaji (20170810-501DAE64)

11.3 アプリカティブファンクターを使おう 241

たら、まずは Functor に属させるべし」という型クラス制約です。ですから、
ある型コンストラクタが Applicative 型クラスに属していたら、それは必ず
Functorでもあるので、常に fmapが使えます。

Applicative 型クラスの定義する最初のメソッドは pure と呼ばれます。そ
の型宣言は pure :: a -> f aです。この fがアプリカティブファンクターに
なるものです。Haskellの型システムはとてもよくできている上に、どんな関数
も引数を取って何か値を返す以外のことはできないので、型宣言からは実に多く
のことが読み取れます。今回も例外ではありません。

pureは任意の型の引数を受け取り、それをアプリカティブ値の中に入れて返
します。「中に入れて」という言い方はファンクターのときに使った箱の比喩を
踏襲したものです。すでに見たように、この比喩が当てはまらない場合もあり
ますが、型宣言 a -> f a を文字どおりに解釈すれば自明でしょう。すなわち
pureは、値を取って、内部にその値を結果として含むアプリカティブ値にくる
みます。アプリカティブ値は「箱」というよりも「文脈」と考えるほうが正確か
もしれません。 pureは、値を引数に取り、その値を何らかのデフォルトの文脈
（元の値を再現できるような最小限の純粋な文脈）に置くのです。

<*>関数はすごく面白いですね。型定義はこうなっています。

f (a -> b) -> f a -> f b

これを見て何か思い出しませんか？ そう、これって fmap :: (a -> b) ->

f a -> f bにそっくり！ <*>は、 fmapの強化版なのです。 fmapが普通の関
数とファンクター値を引数に取って、関数をファンクター値の中の値に適用し
てくれるのに対し、 <*> は関数の入っているファンクター値と値の入っている
ファンクター値を引数に取って、1つ目のファンクターの中身である関数を 2つ
目のファンクターの中身に適用するのです。

Maybeはアプリカティブファンクター
手始めに Maybeの Applicativeインスタンスを見てみましょう。

instance Applicative Maybe where
pure = Just
Nothing <*> _ = Nothing
(Just f) <*> something = fmap f something

ファンクターのときと同じく、アプリカティブファンクターになる型コンスト
ラクタ fも、具体型を 1つだけ型引数に取ることがクラス定義から分かります。
なので、インスタンス宣言の書き出しは instance Applicative Maybe where

とします。 instance Applicative (Maybe a) whereではダメですよ。

oyaji (20170810-501DAE64)

242 第 11章 ファンクターからアプリカティブファンクターへ

次の行は pureの定義です。 pureは何かを取ってそれをアプリカティブ値に
包むのでしたね。 pureの定義には、ただ pure = Justとだけ書いてあります。
Justのような型コンストラクタは普通の関数でもありますから、これでいいん
です。 pure x = Just xと書いてもかまいません。
残りは <*>の定義です。まず、 Nothingからは関数が取り出せません。なに

しろ無ですから。そこで、 Nothingから関数を取り出そうとした場合は結果も
Nothing、ということにしましょう。

Applicative のクラス定義には Functor の型クラス制約が付いていました
から、 <*>関数の 2つの引数は両方ともファンクター値であるはずです。もし
最初の引数が Nothing でなくて Just なら、その中身の関数を取り出して 2 つ
目の引数に fmapすることにします。こうすれば、2つ目の引数が Nothingだっ
た場合にも自動的に対応できます。 Nothingを fmapしても Nothingだからで
す。というわけで、Maybeファンクターに関する <*>の挙動は、左辺が Justな
らその中の値を取り出して右辺を写す、というものです。もし左右どちらかの引
数が Nothingだったら答も Nothingになります。
さあ、試してみましょう。

ghci> Just (+3) <*> Just 9
Just 12
ghci> pure (+3) <*> Just 10
Just 13
ghci> pure (+3) <*> Just 9
Just 12
ghci> Just (++"hahah") <*> Nothing
Nothing
ghci> Nothing <*> Just "woot"
Nothing

見てのとおり、 pure (+3)と Just (+3)の効果はまったく同じです。 pure

を使うのは、 Maybeをアプリカティブとして（ <*>と組み合わせて）使う場合
だけに止めておいたほうが無難でしょう。そのほかの場合は素直に Justを使い
ましょう。
最初の 4 行は、アプリカティブから関数を取り出して適用するデモです。で
も、こういう場合はわざわざアプリカティブにくるまなくても、生の関数を fmap

すれば済みます。ところが最後の行はちょっと変わっています。 Nothingから
関数を取り出して Justに適用しようとした結果、 Nothingを得ています。
普通のファンクターの場合、いったん関数で写してしまったら、ファンクター
の中に入ってしまった関数適用の結果をファンクターの外に取り出す一般的な
方法はありません。たとえその結果が部分適用された関数であったとしてもで

oyaji (20170810-501DAE64)

11.3 アプリカティブファンクターを使おう 243

す。一方、アプリカティブファンクターなら、1つの関数で複数のファンクター
を続けざまに写せるのです！

アプリカティブ・スタイル
Applicative型クラスでは、 <*>を連続して使うことができ、1つだけでな

く複数のアプリカティブ値を組み合わせて使うことができます。例えばこれを
見てください。

ghci> pure (+) <*> Just 3 <*> Just 5
Just 8
ghci> pure (+) <*> Just 3 <*> Nothing
Nothing
ghci> pure (+) <*> Nothing <*> Just 5
Nothing

ここでは +関数をアプリカティブ値の中に入れ、さらに
<*>を使って 2つの引数に適用していますが、そのどちら
もアプリカティブ値です。
一体どうしてこれが可能になったのか、順を追って見て
いきましょう。 <*>は左結合なので、

pure (+) <*> Just 3 <*> Just 5

この式は、

(pure (+) <*> Just 3) <*> Just 5

これと同じです。
まず、+関数をアプリカティブ値（今回は Maybe値）の中に入れたいので、pure

 (+) を使います。これは Just (+) のことです。次に Just (+) <*> Just 3

が評価されます。その結果は Just (3+) になります。ここでは部分適用が起
こっています。 + という二項演算の関数に 3 という 1 つの引数だけを与える
と、「もう 1 つの引数を取ってそれに 3 を足す関数」が返ってきます。最後に
Just (3+) <*> Just 5が実行され、結果は Just 8になります。
これってすごくない？ アプリカティブファンクターとアプリカティブ・スタ

イル pure f <*> x <*> y <*> ...を使えば、もともとアプリカティブなんて
知らずに書かれた普通の関数にもアプリカティブ値の引数を与えることができ
ます。しかも、<*>が出てくるたびに部分適用が働くので、いくつでも引数を与
えることができるのです。
アプリカティブ・スタイルをもっと理解して便利に使うためのポイント、それ
は、 pure f <*> x は fmap f x と等しい、という事実を考慮に入れることで
す。ちなみに、これはアプリカティブ則の 1つです。アプリカティブ則について

oyaji (20170810-501DAE64)

244 第 11章 ファンクターからアプリカティブファンクターへ

はこの章の後半で詳しく見るとして、今はこの法則にどういう効果があるかを考
えましょう。 pureは値をデフォルトの文脈の中に入れます。ある関数をデフォ
ルトの文脈の中に入れ、また取り出して別のアプリカティブファンクターの中の
値に適用する、という操作は、単に元の関数でアプリカティブファンクターを
写すのと同じことです。そこで、 pure f <*> x <*> y <*> ...と書く代わり
に、 fmap f x <*> y <*> ... と書くことができます。このパターンはしょっ
ちゅう使うので、 Control.Applicative は fmap と等価な中置演算子 <$> を
エクスポートしています。 <$> の定義はこれです。

(<$>) :: (Functor f) => (a -> b) -> f a -> f b
f <$> x = fmap f x

NOTE fが 2回登場しますが、1行目と 2行目の fは別物です。型変数の働きは引数の名前
やそのほかの値の名前に依存しないことを思い出してください。1行目の関数宣言に
登場するのは型変数 fで、これには型クラス制約が付いていて、 fに入る型コンスト
ラクタは Functor 型クラスに属している必要があると言っています。2 行目の f は
関数の本体で、 x を写すのに使うものです。両方とも f という名前がついています
が、だからといって同じものではありませんよ。

<$> を使うとアプリカティブ・スタイルの素晴らしさが引き立ちます。例え
ば、関数 fを 3つのアプリカティブ値の引数に適用したければ、 f <$> x <*>

 y <*> z と書けるのです。引数がアプリカティブ値でなく普通の値だったら
f x y zと書くところです。
この書き方でなぜうまくいくのか追ってみましょう。例えば、値 Just

"johntra" と Just "volta" を結合して 1 つの Maybe String 型の値を作り
たいとします。それはこう書けます。

ghci> (++) <$> Just "johntra" <*> Just "volta"
Just "johntravolta"

どうしてこうなるのか確かめる前に、上の例を次と比べてみてください。

ghci> (++) "johntra" "volta"
"johntravolta"

普通の関数をアプリカティブファンクターの関数として使うには、<$>と <*>

をちりばめるだけです。すると関数は、アプリカティブ値を取ってアプリカティ
ブ値を返すようになります。便利すぎるでしょう？

(++) <$> Just "johntra" <*> Just "volta" の例に戻りましょう。まず
は (++) :: [a] -> [a] -> [a] の型を持つ関数 (++) が Just "johntra" を
写します。できた値は Just ("johntra"++) と等価なもので、型は Maybe

([Char] -> [Char]) です。 (++) の最初の引数が消費され、 a は Char に変
わりましたね。さて次は Just ("johntra"++) <*> Just "volta"の評価が発

oyaji (20170810-501DAE64)

11.3 アプリカティブファンクターを使おう 245

生します。すると Just から関数が出てきて Just "volta" を写し、最終結果
Just "johntravolta"を生み出します。もし、いずれかの引数が Nothingだっ
たとしたら、答は Nothingになります。
ここまで Maybe の例しか出てきてませんが、もしかしてアプリカティブファ
ンクターのことを Maybe専用だなんて思っていませんか？ Applicativeのイ
ンスタンスはいっぱいあるんですよ！

リスト
リスト（正確に言えばリスト型コンストラクタ []）もアプリカティブファン
クターです。意外ですか？ []の Applicativeインスタンス宣言はこうです。

instance Applicative [] where
pure x = [x]
fs <*> xs = [f x | f <- fs, x <- xs]

pureは値を取ってデフォルトの文脈に入れるものでした。ここで言うデフォ
ルトの文脈とは、なるべく小さな、それでいて引数を再現できるような最小限の
文脈のことです。さて、リストの文脈における最小のものは空リストです。しか
し、空リストは、値がないことを表しているのですから、 pureの引数に渡され
た値を持っておくことができません。だから、 pureは引数を単一要素のリスト
に入れて返すのです。これは Maybeアプリカティブファンクターのときも同じ
でしたね。 Maybeの最小の文脈は Nothingでしたが、Nothingは値がないこと
を表しているので、 pureは Justを使って実装されていたのでした。
これが pureの動作です。

ghci> pure "Hey" :: [String]
["Hey"]
ghci> pure "Hey" :: Maybe String
Just "Hey"

<*>についてはどうでしょう？ 関数 <*>の型をリストに制限すると、 (<*>)

 :: [a -> b] -> [a] -> [b]になります。 <*>はリスト内包表記で実装され
ています。二項演算子 <*>は、何らかの方法で左辺から取り出した関数を使い、
右辺を写す必要があります。ところが、左辺のリストに入っている関数は 0個か
もしれないし、1個かもしれないし、複数個かもしれません。もちろん右辺のリ
ストにも複数の値が格納できます。そこで、両方のリストから要素を取り出すた
めにリスト内包表記を使っています。 <*>は左辺のリストのそれぞれの関数を、
右辺のリストのそれぞれの値に適用します。結果、<*>が返すリストには、左辺
のリストの中の関数を右辺のリストの中の値にあらゆる可能な組み合わせで適
用したものが入ります。

oyaji (20170810-501DAE64)

246 第 11章 ファンクターからアプリカティブファンクターへ

リストの <*>を使う例です。

ghci> [(*0),(+100),(^2)] <*> [1,2,3]
[0,0,0,101,102,103,1,4,9]

左辺のリストは 3 つの関数を含んでおり、右辺リストは 3 つの値を含んでい
ます。そこで結果のリストのサイズは 9 になるわけです。左辺のリストのそれ
ぞれの関数が、右辺の値のそれぞれに適用されます。
もし 2引数関数のリストがあれば、その関数を 2つのリストに適用できます。

2つの関数を 2つのリストに適用する例です。

ghci> [(+),(*)] <*> [1,2] <*> [3,4]
[4,5,5,6,3,4,6,8]

<*>は左結合なので、まず [(+),(*)] <*> [1,2] が処理されます。それぞ
れの関数がそれぞれの値に適用されるので、[(1+),(2+),(1*),(2*)]と等価な
リストができます。次に [(1+),(2+),(1*),(2*)] <*> [3,4] が処理されて、
最終結果が出てきます。
アプリカティブ・スタイルをリストで使うと楽しめますよ！

ghci> (++) <$> ["ha","heh","hmm"] <*> ["?","!","."]
["ha?","ha!","ha.","heh?","heh!","heh.","hmm?","hmm!","hmm."]

適切なアプリカティブ演算子と組み合わせるだけで、2つの文字列を引数に取
る関数を 2つの文字列のリストに使いました。
リストは非決定性計算とみなすことができます。 100や "what"のような値

は答が 1つしかない決定性計算であるのに対し、[1,2,3]のようなリストは「ど
の答がいいか決められないので可能性のある答をすべて提示している」とみなせ
ます。この見方に立てば、 (+) <$> [1,2,3] <*> [4,5,6]というコードは、2
つの非決定性計算を +で足し算して、いっそう自信のない新たな非決定性計算の
結果が生じた、と解釈できます。
アプリカティブ・スタイルをリストに使うと、リスト内包表記をうまく置き換

えられることが多々あります。第 1章には、 [2,5,10]と [8,10,11]の積とし
て可能な値をすべて求めたい、という例題がありました。そのときは次のように
して、

ghci> [x*y | x <- [2,5,10], y <- [8,10,11]]
[16,20,22,40,50,55,80,100,110]

2つのリストから値を取り出しては、可能な組み合わせすべてに対して掛け算関
数を適用したのでした。これはアプリカティブ・スタイルではこう書けます。

ghci> (*) <$> [2,5,10] <*> [8,10,11]
[16,20,22,40,50,55,80,100,110]

oyaji (20170810-501DAE64)

11.3 アプリカティブファンクターを使おう 247

個人的にはこちらの記法のほうがきれいだと思います。2つの非決定性計算に
対して *を呼び出しているだけだ、と考えるほうが、リスト内包表記より分かり
やすいですからね。2つのリストの要素を掛け合わせて作れる数のうち 50より
大きなものをすべて知りたければ、このように書けます。

ghci> filter (>50) $ (*) <$> [2,5,10] <*> [8,10,11]
[55,80,100,110]

リストの場合、pure f <*> xsと fmap f xsが一致する理由は簡単です。ま
ず、 pure fは [f]です。 [f] <*> xsは、左辺のリストにあるすべての関数を
右辺のリストのすべての値に適用しようとしますが、左辺のリストの中には関数
が 1個しかないので、 [f] <*> xsは mapのような動作をするわけです。

IOもアプリカティブファンクターだよ！
今まで見てきたものの中に、ほかにも Applicativeなものがあります。ずば

りそれは IOです。

instance Applicative IO where
pure = return
a <*> b = do

f <- a
x <- b
return (f x)

pure というのは、要するに、再現できるよう
な形で最小の文脈に値を入れるという意味です。
だから pure が単なる return なのは納得がいき
ますね。 returnは何もしない I/Oアクションを
作ります。ただ値を返すだけで、ターミナルに印
字したりファイルを読み込んだりといった入出力
操作は一切しません。
もし <*> が IO に特殊化されたら、その型は

(<*>) :: IO (a -> b) -> IO a -> IO bにな
るはずです。 IOの場合の a <*> bの実装は、ま
ず a という名の I/O アクションを実行して関数
を手に入れて、その関数を fという名前に束縛し
ます。次に b を実行してその結果を x という名
前に束縛します。最後に、関数 f を x に適用し、
それを結果として返しています。実装には do 記
法が使われています（ do 構文はいくつかの I/O
アクションを 1つに結合するのでしたね）。

oyaji (20170810-501DAE64)

248 第 11章 ファンクターからアプリカティブファンクターへ

Maybeと []に関しては、<*>演算子は単に左辺の引数から関数を取り出して
は右辺を写す操作だと解釈できました。 IOに関する <*>演算子は、取り出すと
ころは同じですが、2つの I/Oアクションを 1つに糊付けするにあたって逐次
実行という意味が新たに加わっています。 <*>演算子は、まず 1つ目の I/Oア
クションから関数を取り出しますが、結果を取り出したかったらその I/Oを実
行する必要があるというわけです。これを見てください。

myAction :: IO String
myAction = do

a <- getLine
b <- getLine
return $ a ++ b

これはユーザに 2行の入力を求め、その 2行を結合したものを返す I/Oアク
ションです。2 つの getLine I/O アクションと return を糊付けして作りまし
た。I/O全体が a ++ bという値を持ってほしかったからです。このプログラム
は次のようにアプリカティブ・スタイルでも書けます。

myAction :: IO String
myAction = (++) <$> getLine <*> getLine

このコードは、「2つの I/Oアクションの結果に関数を適用して返す I/Oアク
ション」として実装したさっきのコードと同じものです。 getLineは getLine

:: IO Stringの型を持つ I/Oアクションです。2つのアプリカティブ値を <*>

演算子で結合したら、結果もアプリカティブ値になるので、すべて理にかなって
います。
箱の比喩で言えば、 getLineとは実世界に出かけていって文字列を取ってき
てくれる小さな箱だと思えます。 (++) <$> getLine <*> getLine を呼び出
すと、この小さな箱を 2つ送り出して端末から入力行を取得し、結合して返して
くれる大きな箱が作られます。
式 (++) <$> getLine <*> getLine の型は IO String です。つまりこの式

は、 Stringを返す他の I/Oアクションとまったく同様、ごく普通の I/Oアク
ションなのです。だからこそ、こういう書き方もできるわけです。

main = do
a <- (++) <$> getLine <*> getLine
putStrLn $ "The two lines concatenated turn out to be: " ++ a

oyaji (20170810-501DAE64)

11.3 アプリカティブファンクターを使おう 249

関数もアプリカティブだよ
Applicativeのインスタンスはまだあります。 (->) r、つまり関数がそう

です。関数をアプリカティブとして使う機会はあまり多くありませんが、概念自
体はとても面白いので、アプリカティブな関数のインスタンスがどのように実装
されているか見てみましょう。

instance Applicative ((->) r) where
pure x = (_ -> x)
f <*> g = \x -> f x (g x)

ある値を、 pure を使ってアプリカティブ値に包んだものは、元の値を生み
出せないといけません。つまり、その値を再現できるような最小限のデフォル
ト文脈でなければなりません。そこで、関数のアプリカティブなインスタンス
の実装における pure は、値を取って「引数を無視して常にその値を返す関数」
を作るようになっています。 (->) r インスタンスに特殊化した pure の型は
pure :: a -> (r -> a)です。

ghci> (pure 3) "blah"
3

カリー化のおかげで関数適用は左結合になっているので、この括弧は省け
ます。

ghci> pure 3 "blah"
3

<*>のインスタンス実装は少々暗号じみているので、関数をアプリカティブ・
スタイルで使う方法から見ていきましょう。

ghci> :t (+) <$> (+3) <*> (*100)
(+) <$> (+3) <*> (*100) :: (Num a) => a -> a
ghci> (+) <$> (+3) <*> (*100) $ 5
508

<*>を 2つのアプリカティブ値に対して呼び出した結果はアプリカティブ値
です。したがって、<*>を 2つの関数に使ったら関数が返ってきます。では、こ
のコードでは何が起こっているのでしょう？ (+) <$> (+3) <*> (*100)と書
くと、「引数を (+3)と (*100)に渡し、2つの結果に対して +を使う」関数が出
来上がります。この関数に引数 5を与え、 (+) <$> (+3) <*> (*100) $ 5と
いう形で呼ぶと、まず (+3)と (*100)が 5に適用され、それぞれ 8と 500を返
します。それから +が引数 8と 500を取って呼ばれ、 508を生み出します。
次のコードも似たようなものです。

ghci> (\x y z -> [x,y,z]) <$> (+3) <*> (*2) <*> (/2) $ 5
[8.0,10.0,2.5]

oyaji (20170810-501DAE64)

250 第 11章 ファンクターからアプリカティブファンクターへ

ここで作ったのは、3つの関数(+3)、
(*2)、(/2) からの結果をもって関数
\x y z -> [x,y,z] を呼び出す関数
です。最後の引数 5 は、まず 3 つの
関数にそれぞれ入り、出てきた返り値
を引数にして \x y z -> [x,y,z] が
呼び出されています。

NOTE Applicative の (->) r インスタンスの仕組みを理解することは、そこまで重要で
はありません。だから完全に分からなくても気にしない。アプリカティブ・スタイル
と関数で遊んでみて、関数をアプリカティブとして使えることが分かれば十分です。

Zipリスト
実は、リストをアプリカティブファンクターにする方法は複数あるんです。1

つ目の方法はもうご紹介しました。 <*> を関数のリストと値のリストに対して
呼び出して、左辺のリストからの関数と右辺のリストからの値のあらゆる可能な
組み合わせを作り、適用したリストを返すというものです。
例えば、 [(+3),(*2)] <*> [1,2]というふうに書いたら、 (+3)は 1と 2の

両方に適用され、 (*2)も 1と 2の両方に適用されるので、結果として 4つの要
素からなるリスト [4,5,2,4]ができます。ところが、[(+3),(*2)] <*> [1,2]

の挙動は、左辺の 1つ目の関数を右辺の 1つ目の値に適用し、左辺の 2つ目の関
数を右辺の 2つ目の値に適用する、というのではまずいのでしょうか？ それな
ら結果は [4,4]になるはずです。これは [1 + 3, 2 * 2]と考えることもでき
ます。
ここで初めて登場する Applicative のインスタンスが ZipList です

（ Control.Applicativeモジュールにあります）。
1つの型に対して、同じ型クラスのインスタンスを複数回宣言することはでき

ないので、 []の代わりに ZipList a型を導入します。これは、1つのコンスト
ラクタ（ZipList）と、ただ 1つのフィールド（ aのリスト）を持ちます。これが
インスタンス宣言です。

instance Applicative ZipList where
pure x = ZipList (repeat x)
ZipList fs <*> ZipList xs = ZipList (zipWith (\f x -> f x) fs xs)

<*> は、1 つ目の関数を 1 つ目の値に、2 つ目の関数を 2 つ目の値に、……
と適用します。これをやっているのが zipWith (\f x -> f x) fs xs です。

oyaji (20170810-501DAE64)

11.3 アプリカティブファンクターを使おう 251

zipWith の仕様上、出来上がるリストは 2 つのリストのうちの短いほうの長さ
になります。

pure の定義も面白いですね。 ZipList の pure は、引数を取って、それ
を永遠に繰り返すリストに突っ込みます。例えば pure "nya" は ZipList

(["nya","nya","nya"... を返します。これはおかしいと思うかもしれませ
ん。 pureは引数を再現できる最小の文脈に入れるものなのに、無限リストはと
ても最小の文脈には見えませんよね。しかし ZipList に限っては、 pure はリ
ストのあらゆる位置で値を再現してほしいので、この定義でよいのです。それ
にこの定義なら、 pure f <*> xs と fmap f xs は等価であれ、という法則を
満たします。もし pure 3 がただの ZipList [3] を返す仕様だったとしたら、
pure (*2) <*> ZipList [1,5,10] の結果は ZipList [2] になってしまいま
す。2 つのリストを zip した結果の長さは短いほうの長さになるからです。一
方、無限リストと有限リストを zipした結果のリストの長さは、有限リストのほ
うの長さになります。
さて、 ZipListをアプリカティブ・スタイルで試してみましょう！ と言いた

いところですが、 ZipList a型は Showインスタンスをサポートしていません。
getZipList関数を使って生リストを取り出す必要があります。

ghci> getZipList $ (+) <$> ZipList [1,2,3] <*> ZipList [100,100,100]
[101,102,103]
ghci> getZipList $ (+) <$> ZipList [1,2,3] <*> ZipList [100,100..]
[101,102,103]
ghci> getZipList $ max <$> ZipList [1,2,3,4,5,3] <*> ZipList [5,3,1,2]
[5,3,3,4]
ghci> getZipList $ (,,) <$> ZipList "dog" <*> ZipList "cat" ⇨

<*> ZipList "rat"
[('d','c','r'),('o','a','a'),('g','t','t')]

NOTE 関数 (,,) は \x y z -> (x,y,z) と同じです。同様に、 (,) と書いたら、それは
\x y -> (x,y)という意味です。

zipWith以外にも、標準ライブラリは zipWith3、zipWith4、…、zipWith7

までの関数を備えています。 zipWithは 2引数関数を取って、2つのリストを
それで綴じ合わせます。 zipWith3は 3引数関数を取って、3つのリストを綴じ
合わせます。以下同様。ところが、 ZipListをアプリカティブ・スタイルで使
えば、綴じ合わせたいリストの数ごとに zip 関数を使い分ける必要はなくなり
ます。アプリカティブ・スタイルを使えば、好きな数のリストを 1つの関数で綴
じ合わせることができます。便利でしょう？

oyaji (20170810-501DAE64)

252 第 11章 ファンクターからアプリカティブファンクターへ

アプリカティブ則
普通のファンクターのように、アプリカティブファンクターにもいくつかの

法則が付いてきます。中でも一番重要なのは pure f <*> x = fmap f xです。
この章で出会ったいくつかのファンクターに対してこの法則を証明するのは演
習問題とします。これ以外のアプリカティブ則の一覧はこちらです。s pure id <*> v = vs pure (.) <*> u <*> v <*> w = u <*> (v <*> w)s pure f <*> pure x = pure (f x)s u <*> pure y = pure ($ y) <*> u

これら法則の詳細について説明しだすと長くなって退屈なので、ここでは省略
します。興味のある方は、アプリカティブのインスタンスたちがこの法則をどの
ように満たしているか実験してみてください。

11.4 アプリカティブの便利な関数
Control.Applicativeには liftA2という、以下のような型を持つ関数があ

ります。

liftA2 :: (Applicative f) => (a -> b -> c) -> f a -> f b -> f c

liftA2の定義はこうです。

liftA2 :: (Applicative f) => (a -> b -> c) -> f a -> f b -> f c
liftA2 f a b = f <$> a <*> b

liftA2は、これまで見てきたアプリカティブ・スタイルを省略しつつ、1つ
の関数を 2 つのアプリカティブ値に適用するだけの関数です。しかし、アプリ
カティブファンクターが通常のファンクターに勝っている点を明瞭に示す例に
なっています。
通常のファンクターでは、関数を 1 つのファンクター値に適用することしか
できません。アプリカティブファンクターなら、関数をいくつものファンクター
値に適用できます。 liftA2の型を (a -> b -> c) -> (f a -> f b -> f c)

と解釈すると、これがまた面白い。この見方をすれば、 liftA2は「通常の 2引
数関数を、2つのアプリカティブ値を引数に取る関数に昇格させる」関数だとみ
なすことができます。
ここで 1つ、面白い概念を紹介しましょう。2つのアプリカティブ値から、そ
れらの返り値をリストとして内包する 1 つのアプリカティブ値を組み立てるこ

oyaji (20170810-501DAE64)

11.4 アプリカティブの便利な関数 253

とができます。例えば Just 3と Just 4があるとします。まずは 2つ目の中身
の 4を単一要素リストに入れましょう。これはとっても簡単です。

ghci> fmap (\x -> [x]) (Just 4)
Just [4]

よし。今、手札には Just 3と Just [4]があります。ここから Just [3,4]

を作るにはどうしたら？ これも簡単です。

ghci> liftA2 (:) (Just 3) (Just [4])
Just [3,4]
ghci> (:) <$> Just 3 <*> Just [4]
Just [3,4]

:は、ある要素とあるリストを取って、その要素を先頭に付けた新しいリスト
を作る関数でしたね。さて、 Just [3,4]はできました。次にこれを Just 2と
組み合わせて Just [2,3,4] を作ることはできるでしょうか？ もちろんです。
どうやら、好きな数のアプリカティブ値たちから、それらの返り値をリストに
したものを持つ単一のアプリカティブ値を組み立てることは、常に可能なよう
です。
では、「アプリカティブ値のリスト」を取って「リストを返り値として持つ 1
つのアプリカティブ値」を返す関数を実装してみましょう。これを sequenceA

と呼ぶことにします。

sequenceA :: (Applicative f) => [f a] -> f [a]
sequenceA [] = pure []
sequenceA (x:xs) = (:) <$> x <*> sequenceA xs

おお、再帰だ！ まずは型を見てみましょう。この関数は、アプリカティブ値
のリストを、リストを持っているアプリカティブ値に変えます。この型からだけ
でも、再帰の基底部を書くことができます。空リストをリストを持っているアプ
リカティブ値にしたかったら、単にデフォルトの文脈に入れるだけです。次は再
帰部です。リストの headと tailが与えられたなら（ xは単一のアプリカティブ
値で、 xsはアプリカティブ値のリストですね）、まず sequenceAを tailに対し
て呼んでリストの入ったアプリカティブ値を返してもらい、 pure (:)を使って
アプリカティブ値 x の中身をそのリストに結合すればいいのです。ね、簡単で
しょ！
次のように実行したとしましょう。

sequenceA [Just 1, Just 2]

定義により、これはこう書くのと同値です。

(:) <$> Just 1 <*> sequenceA [Just 2]

oyaji (20170810-501DAE64)

254 第 11章 ファンクターからアプリカティブファンクターへ

さらに評価を進めると、こうなります。

(:) <$> Just 1 <*> ((:) <$> Just 2 <*> sequenceA [])

ここで、 sequenceA []は Just []になるので、

(:) <$> Just 1 <*> ((:) <$> Just 2 <*> Just [])

こうなって、

(:) <$> Just 1 <*> Just [2]

Just [1,2]ができました！
sequenceAは、畳み込みを使っても実装できます。リストの要素を走査しな

がら何らかの結果を集計するという操作は、たいてい畳み込みを使って実装でき
ることを覚えておいてください。

sequenceA :: (Applicative f) => [f a] -> f [a]
sequenceA = foldr (liftA2 (:)) (pure [])

リストを右から処理し、アキュムレータの初期値は pure []にしておきます。
次に liftA2 (:)がアキュムレータとリストの最後の要素に適用され、単一要素
リストが入ったアプリカティブ値ができます。続いて liftA2 (:)が、今の最終
要素（元リストの最後から 2番目）とアキュムレータに適用され、2要素リスト
が入ったアプリカティブ値ができ、……同様に続けて、最後にすべてのアプリカ
ティブの返り値のリストが入っているアキュムレータだけが残ります。
さっそく、この関数をアプリカティブ値に対して使ってみましょう。

ghci> sequenceA [Just 3, Just 2, Just 1]
Just [3,2,1]
ghci> sequenceA [Just 3, Nothing, Just 1]
Nothing
ghci> sequenceA [(+3),(+2),(+1)] 3
[6,5,4]
ghci> sequenceA [[1,2,3],[4,5,6]]
[[1,4],[1,5],[1,6],[2,4],[2,5],[2,6],[3,4],[3,5],[3,6]]
ghci> sequenceA [[1,2,3],[4,5,6],[3,4,4],[]]
[]

Maybe値のリストに対して sequenceAを使うと、すべての返り値をリストと
して含んだ単一の Maybe値ができます。ただし、元のリストの中の Maybe値の
いずれかが Nothingであった場合、結果も Nothingになります。この振る舞い
は、 Maybe値のリストがあり、どれも Nothingでない場合に限って中身に興味
がある、という場合に便利です。
関数に対して sequenceA を使うと、「関数のリスト」を取って「リストを返
す関数」を返します。上の例では、ある数を引数に取り、リストの中の各関数
を適用した結果をリストとして返すような関数を作っています。 sequenceA

oyaji (20170810-501DAE64)

11.4 アプリカティブの便利な関数 255

[(+3),(+2),(+1)] 3 は、関数 (+3)を引数 3に、関数 (+2)を引数 3に、関数
(+1)を引数 3に適用し、その結果をリストとして返します。
前に (+) <$> (+3) <*> (*2)と書いたときには、「1つの引数を取って (+3)

と (*2)の両方を適用し、その 2つの結果を +する」関数が作れました。これと
同じノリで、 sequenceA [(+3),(*2)]と書くと「1つの引数を取ってそれをリ
ストの中のすべての関数に食わせる」関数が作れるのです。ただし sequenceA

では、返り値を +で結合する代わりに、 :と pure [] の組み合わせによって返
り値たちを 1 つのリストに結合し、それが sequenceA [(+3),(*2)] 全体の返
り値となります。

sequenceAは、関数のリストがあり、そのすべてに同じ引数を食わせて結果
をリストとして眺めたい、という場合にはとても便利です。例えば、ある数がい
くつかの性質をすべて満たしているかテストしたいときなどです。例えばこん
なやり方があります。

ghci> map (\f -> f 7) [(>4),(<10),odd]
[True,True,True]
ghci> and $ map (\f -> f 7) [(>4),(<10),odd]
True

ここで andは、 Boolのリストを取り、すべてが Trueである場合に限り True

を返す関数でしたね。 sequenceAを使うと別の書き方ができます。

ghci> sequenceA [(>4),(<10),odd] 7
[True,True,True]
ghci> and $ sequenceA [(>4),(<10),odd] 7
True

sequenceA [(>4),(<10),odd] が作る関数は、引数として取った数
に [(>4),(<10),odd] のそれぞれを適用し、 Bool のリストを返します。
sequenceAは、 (Num a) => [a -> Bool]の型を持ったリストを (Num a) =>

 a -> [Bool]という型の関数に変えたのです。すごくないですか？
リストの中の関数はすべて同じ型じゃないといけません。例えば、 [ord,

(+3)] などというリストは作れません。 ord は文字を取って数値を返すのに対
し、 (+3)は数値を取って数値を返すからです。

sequenceA を [] に対して使うと、リストのリストを取ってリストのリスト
を返す関数になります。実際の動作は、1番目のリストから 1つ、2番目のリス
トから 1つ、……というふうに要素を取って作れるリストをすべて列挙するとい
うものになります。説明のために、先ほどの例を sequenceAおよびリスト内包
表記を使って再現してみます。

ghci> sequenceA [[1,2,3],[4,5,6]]
[[1,4],[1,5],[1,6],[2,4],[2,5],[2,6],[3,4],[3,5],[3,6]]

oyaji (20170810-501DAE64)

256 第 11章 ファンクターからアプリカティブファンクターへ

ghci> [[x,y] | x <- [1,2,3], y <- [4,5,6]]
[[1,4],[1,5],[1,6],[2,4],[2,5],[2,6],[3,4],[3,5],[3,6]]
ghci> sequenceA [[1,2],[3,4]]
[[1,3],[1,4],[2,3],[2,4]]
ghci> [[x,y] | x <- [1,2], y <- [3,4]]
[[1,3],[1,4],[2,3],[2,4]]
ghci> sequenceA [[1,2],[3,4],[5,6]]
[[1,3,5],[1,3,6],[1,4,5],[1,4,6],[2,3,5],[2,3,6],[2,4,5],[2,4,6]]
ghci> [[x,y,z] | x <- [1,2], y <- [3,4], z <- [5,6]]
[[1,3,5],[1,3,6],[1,4,5],[1,4,6],[2,3,5],[2,3,6],[2,4,5],[2,4,6]]

(+) <$> [1,2] <*> [4,5,6]と書くと、xは [1,2]のいずれだか分からず、
y は [4,5,6] のいずれだか分からないという文脈で、非決定性計算 x + y を
行ってくれるのでした。非決定性計算の結果は、可能な答をすべて列挙したリス
トとして表現されるのでしたね。同様に、 sequenceA [[1,2],[3,4],[5,6]]

と書くと、その結果は xは [1,2]のいずれだか分からず、 yは [3,4]のいずれ
だか分からず、……であるときに可能な [x,y,z]の組み合わせを列挙する、と
いう非決定性計算になります。可能な答の 1つひとつがリストであり、非決定性
計算であることを表現するのに答のリストを使うので、全体の結果は二重リスト
になっているわけです。

I/O アクションに対して使ったときの sequenceA は、まさに sequence で
す！「I/O アクションのリスト」を引数に取って、「各 I/O アクションを実行
し、返り値をリストとして返す I/Oアクション」を返す関数になります。どう
してこうなるかというと、実行したら結果のリストを返すような I/Oアクショ
ンを作るために [IO a]型の値を IO [a]型の値に変えたい、と思ったら、まず
すべての I/Oを直結し、評価が強制され次第 I/Oを 1つずつ実行するしかない
からです。I/Oアクションの結果は実行しないと取り出すことができません。
それでは 3つの I/Oアクション getLineを結合してみましょう。

ghci> sequenceA [getLine, getLine, getLine]
heyh
ho
woo
["heyh","ho","woo"]

まとめると、アプリカティブファンクターは、面白い上にとても便利なもの
です。アプリカティブファンクターを使えば、I/Oを伴う計算、非決定性計算、
失敗するかもしれない計算、……などなど、多種多様な計算をアプリカティブ・
スタイルを使って組み合わせることができます。 <$>と <*>を使うだけで、普
通の関数をどんなアプリカティブファンクターとも組み合わせて使うことがで
き、それぞれのアプリカティブファンクターの文脈の力を借りることができるの
です。

oyaji (20170810-501DAE64)

第12章
モノイド

この章では、また 1つ便利で楽しい型クラスを紹介します。それは Monoidで
す。モノイドは、値を二項演算子で結合できるような型を表します。この章で
は、モノイドとは正確には何なのか、モノイドの満たすべき法則とは何であるか
を紹介します。それから、Haskellのモノイドの具体例や用途を見ていきます。
まずは newtypeキーワードを見てみましょう。モノイドの素晴らしい世界を
探検していると、 newtypeキーワードをしょっちゅう使うことになるからです。

12.1 既存の型を新しい型にくるむ
これまでに、 data キーワードを使って独自の代数

データ型を作る方法は学びました。また、 type キー
ワードを使って既存の型に型シノニムを与える方法も
見ました。この節では、newtypeキーワードを使って、
既存の型から新たな型を作る方法を見ていきます。そ
もそもなぜ newtypeキーワードが必要なのかという疑
問にも、あわせてお答えしたいと思います。
第 11章では、リストをアプリカティブファンクター
にする方法は複数あると言いました。1 つ目は、 <*>

が左辺のリストから関数を 1 つずつ取り出して、それ
ぞれを右辺のリストの中の値すべてに適用し、左辺の
リストの関数と右辺のリストの値のあらゆる組み合わ
せを作る、というものでした。

ghci> [(+1),(*100),(*5)] <*> [1,2,3]
[2,3,4,100,200,300,5,10,15]

257

oyaji (20170810-501DAE64)

258 第 12章 モノイド

2つ目の方法は、 <*>の左辺のリストから先頭の関数を取り出して右辺の先頭
の値に適用し、左辺の次の関数を取り出して右辺の次の値に適用し、……と繰り
返すものです。最終的に <*> は、2 つのリストを綴じ合わせるような働きをし
ます。
しかし、リストはすでに Applicativeのインスタンスだというのに、どうす

ればこの第二の Applicativeインスタンスを定義できるのでしょう？ 第 11章
では、そのために ZipList aという型を導入しました。 ZipList型の値コンス
トラクタは ZipListで、そのフィールドは 1つだけです。そのフィールドには
リストを入れます。そして、綴じ合わせるタイプのアプリカティブとしてリスト
を使いたいときには、リストを ZipListコンストラクタでくるむだけで済むよ
うに、 ZipListを Applicativeのインスタンスにしておきます。事が済んでく
るまれた中身を取り出すには、 getZipListを使います。

ghci> getZipList $ ZipList [(+1),(*100),(*5)] <*> ZipList [1,2,3] $
[2,200,15]

で、これが newtypeキーワードと何か関係があるんでしょうか？ ZipList a

型のデータ宣言をあなたならどう書くか考えてみてください。1つの方法はこう
です。

data ZipList a = ZipList [a]

この型には値コンストラクタが 1 つしかなく、その値コンストラクタには
フィールドがまた 1つだけあって、そこにリストが入っています。 ZipListか
らリストを取り出す関数が自動的に手に入るように、レコード構文を使ってもい
いでしょう。

data ZipList a = ZipList { getZipList :: [a] }

この方法はどこも悪くないように見えますし、実際うまく動きます。既存の
型をある型クラスのインスタンスにする方法は 2 つありました（ deriving と
instance）。 dataキーワードは既存の型を別の型でくるむためだけに使ってい
て、その別の型を第 11章では instanceによって Applicativeのインスタンス
にしました。

Haskellの newtypeキーワードは、まさにこのような「1つの型を取り、それ
を何かにくるんで別の型に見せかけたい」という場合のために作られたもので
す。 ZipList aは実際のライブラリではこう定義されています。

newtype ZipList a = ZipList { getZipList :: [a] }

data キーワードの代わりに newtype キーワードが使われていますね。なぜ
でしょう？ まず、 newtypeは高速です。型をくるむのに dataキーワードを使

oyaji (20170810-501DAE64)

12.1 既存の型を新しい型にくるむ 259

うと、コンストラクタに包んだりほどいたりするたびにオーバーヘッドがかかり
ます。しかし newtypeを使えば、「これは単に既存の型をくるんで作った新しい
型だ（だから newtypeと呼ぶのですね）、内部処理は同じまま違う型を持たせた
いんだ」ということが Haskellに伝わります。Haskellは型推論を済ませた後、
この点を考慮して、包んだりほどいたりする処理を省略してくれます。
では、なぜ逆に常に dataの代わりに newtypeを使わないのでしょうか？ そ
れは、 newtypeキーワードを使って既存の型から新しい型を作るときには、値
コンストラクタは 1種類しか作れず、その値コンストラクタが持てるフィールド
も 1つだけ、という制限があるからです。一方、 dataキーワードを使えば、複
数の値コンストラクタを持つデータ型を作れるし、各コンストラクタには 0以上
の任意個数のフィールドを持たせることができます。

data Profession = Fighter | Archer | Accountant

data Race = Human | Elf | Orc | Goblin

data PlayerCharacter = PlayerCharacter Race Profession

newtypeで作った型に対する derivingキーワードも、dataの場合と同様に
まったく問題なく使えます。 Eq、 Ord、 Enum、 Bounded、 Show、 Readの
インスタンスを導出できます†1。ある型クラスのインスタンスを導出したかった
ら、 newtypeで包もうとしている中身の型がすでにその型クラスのインスタン
スである必要があります。 newtypeは既存の型を包んでいるだけなのですから、
当然ですね。例えば、こうすれば新しい型は等号が使え、文字列に変換できるよ
うになります。

newtype CharList = CharList { getCharList :: [Char] } deriving (Eq, Show)

使ってみましょう。

ghci> CharList "this will be shown!"
CharList {getCharList = "this will be shown!"}
ghci> CharList "benny" == CharList "benny"
True
ghci> CharList "benny" == CharList "oisters"
False

この newtypeの例では、値コンストラクタの型はこうなります。

CharList :: [Char] -> CharList

この値コンストラクタは [Char] 型の値、例えば "my sharona" を取り、
CharList型の値を返します。さっきの例で CharList値コンストラクタを使っ

†1 ［訳注］GHC言語拡張の GeneralizedNewtypeDerivingを使えば、元の型が所属していた任意の型
クラスを導出できるようになります。

oyaji (20170810-501DAE64)

260 第 12章 モノイド

た箇所を見ると、実際そうなってますね。一方、 newtype宣言でレコード構文
を使ったことにより自動生成された getCharList関数は、こんな型を持ちます。

getCharList :: CharList -> [Char]

getCharList は、 CharList を受け取って [Char] に変換します。これは包
んだりほどいたりの処理だと考えてもいいですが、2種類の型の間の変換だと考
えることもできます。

newtypeを使って型クラスのインスタンスを作る
ある型を型クラスのインスタンスにしたいのだが、型引数が一致しなくてでき

ない、ということがよくあります。例えば、 Maybeを Functorのインスタンス
にするのは簡単です。 Functor型クラスの定義はこうだからです。

class Functor f where
fmap :: (a -> b) -> f a -> f b

ですから、まずこう書いて

instance Functor Maybe where

あとは fmapを実装するだけです。
Maybe型コンストラクタが Functor型クラスの定義のうち fの位置を占め、

すべての型引数が埋まります。 fmapは、もし Maybeに限定して動作するなら、
こんな型を持つでしょう。

fmap :: (a -> b) -> Maybe a -> Maybe b

うーん、Haskell って素敵！ さて今度
は、タプルを Functor のインスタンスに
したいと思ったとしましょう。 fmapをタ
プルに作用させて第一の要素（ fst）を変
更するようにしたい！ 例えば fmap (+3)

 (1, 1)と書くと (4, 1)になる、という
感じです。ところが、このようなインスタ
ンスは、いざ書こうとすると書きにくいこ
とが分かります。 Maybe をインスタンス
化するとき、 instance Functor Maybe whereと簡単に書けたのは、型変数が
1 つの型コンストラクタだけが Functor のインスタンスになれるからです。型
(a, b)について同じようなことを書いて、 fmapが変更するのは型 aの部分だ
よ、と指定することはできそうにありません。この制限を回避するために、タプ
ルを newtypeして 2つの型引数の順番を入れ替えることができます。

oyaji (20170810-501DAE64)

12.1 既存の型を新しい型にくるむ 261

newtype Pair b a = Pair { getPair :: (a, b) }

これで、 fmapが第一要素に作用するような形で、タプルを Functorのインス
タンスにできます。

instance Functor (Pair c) where
fmap f (Pair (x, y)) = Pair (f x, y)

ご覧のとおり、 newtype で作った型にはパターンマッチも使えます。 fmap

の実装では、まずパターンマッチを使って Pair 型から中身のタプルを取り出
し、 fをタプルの第一要素に適用し、 Pair値コンストラクタを使ってタプルを
Pair b a型に再変換しています。 Pair b a型に限定した fmapの型はこうな
ります。

fmap :: (a -> b) -> Pair c a -> Pair c b

ここでは、instance Functor (Pair c) whereと定義されており、Functor
の型クラス定義

class Functor f where
fmap :: (a -> b) -> f a -> f b

の fに Pair cが収まっているのです。
これで作りたかったものが作れました。タプルを Pair b a型に変換すると、

fmapが使えるようになり、関数をタプルの第一の要素に適用させることができ
ます。

ghci> getPair $ fmap (*100) (Pair (2, 3))
(200,3)
ghci> getPair $ fmap reverse (Pair ("london calling", 3))
("gnillac nodnol",3)

newtypeと遅延評価
newtypeでできるのは、既存の型を新しい型に変えることだけです。ですか

ら Haskellは、 newtypeで作られた型と元の型を型としては区別しつつ、同一
の内部表現で扱っています。これは、 newtype は dataより高速に処理される
だけでなく、パターンマッチがより怠惰になることを意味します。この項ではこ
の点について見ていきましょう。
ご存知のとおり、Haskellはデフォルトで遅延評価な言語です。つまり、関数
の結果を実際に表示しろと言われるまでは、Haskellは計算を始めません。さら
に Haskell は、関数の結果を表示するのにどうしても必要な部分の計算しか行
いません。さて、undefinedはブッ壊れた計算を表すHaskellの値です。もし、
端末に表示させるなどして、Haskellに undefinedを評価しようとすると（つ

oyaji (20170810-501DAE64)

262 第 12章 モノイド

まり、どうしても undefinedを計算させようとすると）、Haskellは怒りを爆発
させます（専門用語では例外を投げるともいいます）。

ghci> undefined
*** Exception: Prelude.undefined

ところが、例えば undefinedを要素に含むリストを作っても、その先頭要素
を要求するだけなら、その先頭要素さえ undefinedでなければ、すべてがうま
くいっちゃいます。というのも、Haskellは先頭要素以外のリストの要素を評価
する必要がないので、評価しないからです。例えばこのとおり。

ghci> head [3,4,5,undefined,2,undefined]
3

さて、ここで以下のような型を作ったとします。

data CoolBool = CoolBool { getCoolBool :: Bool }

これは data キーワードで作った、いかにもありふれた代数データ型です。
CoolBool型には 1つの値コンストラクタがあり、それには 1つのフィールドが
あって、中身は Bool型です。さて、 CoolBool型をパターンマッチして、中身
の Bool が True であるか False であるかによらず "hello" を返す関数を書い
てみましょう。

helloMe :: CoolBool -> String
helloMe (CoolBool _) = "hello"

では、この関数を、正常な CoolBool値じゃなくて undefinedに適用してみ
ましょう！

ghci> helloMe undefined
"*** Exception: Prelude.undefined

グワーッ！！ 例外だ！ どうしてこの例外が出たのでしょうか？ それは、
dataキーワードで定義された型には複数の値コンストラクタがあるかもしれず
（ CoolBoolにはたまたま 1つしかありませんが）、 helloMe関数に与えられた
引数が (CoolBool _)に合致するかどうかを確認するためには、どのコンストラ
クタが使われたのか分かるところまで引数の評価を進める必要があるからです。
そして undefinedを少しでも評価しようものなら……ドカーン！ 一巻の終わり
です。
では、 CoolBool を作るのに、 data じゃなくて newtype を使ったらどうで
しょう？

newtype CoolBool = CoolBool { getCoolBool :: Bool }

oyaji (20170810-501DAE64)

12.1 既存の型を新しい型にくるむ 263

helloMe関数を変更する必要はありません。 newtypeで定義した型も、data

で定義した型も、パターンマッチの構文は共通だからです。さっきみたいに
helloMeに undefinedを適用してみましょう。

ghci> helloMe undefined
"hello"

おや、今度は動きました！ ムムムー、なんで？ これま
でに学んだとおり、 newtypeを使ったときは、Haskell
は新しい型の値も元の型の値も内部的には同じ表現を使
えます。新しい型に対して箱を追加するような処理はし
ていませんし、ただ異なる型だと認識しているだけです。
そして Haskell は、 newtype キーワードはコンストラ
クタを 1つしか作れないと知っているので、helloMe関
数の引数を評価することなく、引数が (CoolBool _)パ
ターンに合致すると判定できます。だって newtypeには
値コンストラクタもフィールドも 1つしかないのですから！
今紹介した事例は些細な違いに思えるかもしれませんが、これは実に重要な
違いです。この例が示しているのは、 dataキーワードで定義した型と newtype

キーワードで定義した型はプログラマの視点からはそっくりに見えるかもしれ
ない（どちらにも値コンストラクタとフィールドがある）けれども、実際には 2
つの異なったメカニズムだということです。 dataはオリジナルな型を無から作
り出すものです。これに対し newtypeは、既存の型をもとに、はっきり区別さ
れる新しい型を作るものです。 dataに対するパターンマッチが箱から中身を取
り出す操作なのに対し、 newtypeに対するパターンマッチは、ある型を別の型
へ直接変換する操作なのです。

type vs. newtype vs. data
ここまできて、 type、 data、 newtypeの 3つがどう違うのか混乱している

かもしれませんね。整理しておきましょう。
まず、 typeキーワードは型シノニムを作るためのものです。既存の型に別名

をつけて、呼びやすくするのです。例えばこう書くと、

type IntList = [Int]

[Int]型を IntListとも呼べるようになります。それだけです。2つの呼び名
は自由に交換できます。そして、 IntList型の値コンストラクタとか、そうい
う類のものは一切生じません。 [Int]と IntListは同じものの別名にすぎない
ので、型注釈にどちらの名前を使うかは自由です。

oyaji (20170810-501DAE64)

264 第 12章 モノイド

ghci> ([1,2,3] :: IntList) ++ ([1,2,3] :: [Int])
[1,2,3,1,2,3]

型シノニムは、型シグネチャを整理して分かりやすくしたいときに使います。
特定のものを表すために複雑な型を作ることがありますが、その型に名前をつけ
れば、その型をどういう目的で使っているのかをコードを読む人に伝えられます
よね。例えば第 7章では、電話帳を表現するために [(String, String)]型の
連想リストを使いました。そして、それに PhoneBookという型シノニムをつけ
ることで、電話帳を扱う関数の型シグネチャを読みやすくしました。
次に newtypeキーワードは、既存の型を包んで新しい型を作るためのもので

す。 newtypeは、もっぱら型クラスのインスタンスを作りやすくするために使
われます。 newtypeを使って既存の型を包むことにより出来上がる型は、元の
型とは別物になります。次のような newtypeを作ったとしましょう。

newtype CharList = CharList { getCharList :: [Char] }

このとき、 CharList と [Char] を ++ で連結することはできません。2 つの
CharListを ++で連結することすらできません。なぜなら、 ++はリスト限定の
演算子であり、 CharListはリストを中身に持っているとはいえ、リストそのも
のではないからです。しかし、 CharListをいったんリストに変換した上で ++

して、また CharListに戻すことならできます。
newtype宣言でレコード構文を使うと、新しい型と元の型を相互変換する関

数が作られます。具体的には、 newtypeの値コンストラクタと、フィールド内
の値を取り出す関数です。新しい型は、元の型の所属していた型クラスを引き継
ぎがないので、 derivingで導出するか、インスタンス宣言を手書きする必要が
あります†2。

newtype宣言は、値コンストラクタが 1つだけ、フィールドも 1つだけとい
う制限の付いた data宣言だとみなしても実用上は問題ありません。もし自分が
書いたコードにそんな data 宣言を見つけたなら、 newtype で代用できないか
考えてみてください。

dataキーワードは、自作の新しいデータ型を作るためのものです。 dataを
使えば、フィールドとコンストラクタを山ほど備えたどんな途方もないデータ型
だろうと作り出せます。リストや Maybeのような型も、木も、何でもです。
まとめると、3つのキーワードはこのように使い分けてください。s 型シグネチャを整理したいとか、型名が体を表すようにしたいだけなら、

たぶん型シノニムを使うといいでしょう。

†2 ［訳注］あるいは GeneralizedNewtypeDerivingを使う。

oyaji (20170810-501DAE64)

12.2 Monoid大集合 265s 既存の型をある型クラスのインスタンスにしたくて、新しい型にくるむ方
法を探しているのなら、 newtypeがぴったり！s 何かまったく新しいものを作りたい人には、きっと data が向いてい
るよ！

12.2 Monoid大集合
Haskell の型クラスは、同じ振る舞い

をする型たちに共通のインターフェイス
を提供するために使われています。最初
に紹介したのは、等号が使える型のクラ
スである Eq や、順序が付けられる Ord

といった単純なものでした。それから、
Functorや Applicativeのような、もっ
と面白い型クラスも紹介しました。
新しい型を作る人は、「この型には何が
できるだろう？ どんな操作をサポートす
るだろう？」と考えて、その型に欲しい機能をもとに、どの型クラスのインスタ
ンスを実装するかを決めます。もしその型の値どうしの等号を定義することに
意味があるなら、 Eqのインスタンスにします。もしその型が何らかのファンク
ターになっているのなら、 Functorのインスタンスにします。などなど。
さて、こんなことを考えてみましょう。 * は 2 つの数を取って掛け算をする

関数です。そして、何かと 1 を掛け算すると、結果は常に元の数です。 1 * x

とやっても、 x * 1とやっても、結果は xです。次に、関数 ++を考えます。数
の掛け算と 2つのリストの連結は、全然別種の操作に思えますが、2つのものを
取って 1つを返すという点では同じです。しかも、 ++には * と同じように、演
算しても相手を変えない値があります。それは空リスト []です。

ghci> 4 * 1
4
ghci> 1 * 9
9
ghci> [1,2,3] ++ []
[1,2,3]
ghci> [] ++ [0.5, 2.5]
[0.5,2.5]

どうやら、 *に 1という組み合わせと、 ++に []という組み合わせは、共通
の性質を持っているようですね。

oyaji (20170810-501DAE64)

266 第 12章 モノイドs 関数は引数を 2つ取る。s 2つの引数および返り値の型はすべて等しい。s 2引数関数を施して相手を変えないような特殊な値が存在する。

よく観察すると、ほかにも共通の性質が見つかります。この関数を使って
3 つ以上の値を 1 つの値にまとめる計算をするとき、値の間に関数を挟む順
序を変えても結果は変わらない、という性質です。例えば、 (3 * 4) * 5 も
3 * (4 * 5)も、答は 60です。 ++についてもこの性質は成り立ちます。

ghci> (3 * 2) * (8 * 5)
240
ghci> 3 * (2 * (8 * 5))
240
ghci> "la" ++ ("di" ++ "ga")
"ladiga"
ghci> ("la" ++ "di") ++ "ga"
"ladiga"

この性質を結合的（associativity）と呼びます。演算 * と ++ は結合的で
あると言います。結合的でない演算の例は - です。例えば (5 - 3) - 4 と
5 - (3 - 4)は異なる結果になります。
以上の性質に気づいたなら、……あなたはモノイドに出会ったのです！

Monoid型クラス
モノイドは、結合的な二項演算子（2引数関数）と、その演算に関する単位元

からなる構造です。ある値がある演算の単位元であるとは、その値と何か他の値
を引数にしてその演算を呼び出したとき、返り値が常に他の値のほうに等しくな
る、ということです。 1は *の単位元であり、 []は ++の単位元です。Haskell
の世界では、ほかにも無数のモノイドがあるので、 Monoid型クラスが用意され
ています。 Monoidの定義を見てみましょう。

class Monoid m where
mempty :: m
mappend :: m -> m -> m
mconcat :: [m] -> m
mconcat = foldr mappend mempty

Monoid型クラスは Data.Monoidモジュールにて定義されています。今から
少し時間をかけて解説するので、ぜひモノイドに慣れていってください。
まず、 Monoid のインスタンスになれるのは具体型だけであることが分かり
ます。型クラス定義に現れる m が型引数を取っていないからです。この点で
Monoid は、 Functor や Applicative のような、1 つの型引数を取る型コンス
トラクタがインスタンスになる型クラスとは異なっています。

oyaji (20170810-501DAE64)

12.2 Monoid大集合 267

最初の関数は memptyです。いや、引数を
取らないので関数じゃないですね。 mempty

は多相定数です。 Bounded の minBound み
たいなものです。 memptyは、そのモノイド
の単位元を表します。
次は mappendです。これは、お察しのとお
り、モノイド固有の二項演算です。 mappend

は同じ型の引数を 2つ取り、その型の別の値
を返します。この関数の名前を mappend に
したのは、ちょっと残念な判断だと思いま
す。何かを付け足す（append）、という意味
になってしまいますからね。 ++は確かに 2
つのリストを継ぎ足す操作ですが、*には付
け足すという雰囲気が皆無ですからね。 Monoidの他のインスタンスを見ても、
「付け足し」と呼べるような操作はあまりありません。ですから、 mappend を
「付け足す」と考えるのはやめて、単に 2つのモノイド値を取って第三の値を返
す関数とみなすようにしてください。
最後の関数は mconcat です。これはモノイドのリストを取って mappend を
間に挟んだ式を作り、単一の値を計算してくれる関数です。 mconcat には、
memptyを初期値に取り、リストを mappendで右畳み込みしていくというデフォ
ルト実装が付いています。ほとんどのモノイドに関してはこのデフォルト実装
で十分なので、 mconcatに関してはこれ以上深入りはしません。自分で Monoid

型クラスのインスタンスを作るときも、 mempty と mappend だけを実装すれば
動きます。インスタンスによっては、もっと効率的な mconcatの実装があるし
れませんが、多くの場合はデフォルトの実装で何ら問題ないでしょう。

モノイド則
Monoidの具体的なインスタンスを紹介する前に、まずモノイドが満たすべき

法則を見ておきましょう。
これまでに、モノイドには固有の二項演算があること、その二項演算に関す
る単位元があること、その二項演算は結合的であること、などの条件を学びま
した。これらの条件を満たさない Monoid のインスタンスを作ることも可能で
はありますが、そのようなインスタンスを作っても誰も得しません。なぜなら、
Monoidのインスタンスを使う人は、それがモノイドのように振る舞うことを前
提としているからです。でなければ、わざわざモノイドなんて持ち出す必要はな

oyaji (20170810-501DAE64)

268 第 12章 モノイド

いでしょう？ というわけで、Monoidのインスタンスを作るときは、必ず次の法
則を満たすようにしておかないといけません。s mempty `mappend` x = xs x `mappend` mempty = xs (x `mappend` y) `mappend` z = x `mappend` (y `mappend` z)

はじめの 2つの法則は、 memptyが mappendに関して単位元として振る舞う
必要があることを述べています。第三の法則は、 mappendが結合的であること、
つまり複数の mappend で連結された式から 1つの値を計算するとき、 mappend

を評価する順序は最終結果に影響しないことを述べています。Haskellはこれら
の法則を強制しませんので、インスタンスが実際にこれらの法則を満たすよう気
をつけるのは僕たちプログラマの責任です。

12.3 モノイドとの遭遇
さて、モノイドとは何かが分かったところで、Haskellの型のうちモノイドで

あるものを紹介し、それらの Monoidインスタンスがどう実装されていて何に使
うのかを見ていきましょう。

リストはモノイド
はい、リストはモノイドです！ すでに見たように、関数 ++と空リスト []が

モノイドを成します。インスタンス宣言はとてもシンプルです。

instance Monoid [a] where
mempty = []
mappend = (++)

リストは、中身の型が何であっても常に Monoidのインスタンスにできます。
インスタンス宣言が instance Monoid [] ではなく instance Monoid [a] と
なっているのに気がつきましたか？ これは、 Monoidのインスタンスは具体型
と決まっているからです。
動かしてみれば、何の苦もなく使えることが分かるでしょう。

ghci> [1,2,3] ‘mappend‘ [4,5,6]
[1,2,3,4,5,6]
ghci> ("one" ‘mappend‘ "two") ‘mappend‘ "tree"
"onetwotree"
ghci> "one" ‘mappend‘ ("two" ‘mappend‘ "tree")
"onetwotree"
ghci> "one" ‘mappend‘ "two" ‘mappend‘ "tree"
"onetwotree"

oyaji (20170810-501DAE64)

12.3 モノイドとの遭遇 269

ghci> "pang" ‘mappend‘ mempty
"pang"
ghci> mconcat [[1,2],[3,6],[9]]
[1,2,3,6,9]
ghci> mempty :: [a]
[]

最後の行には型注釈を明記してありますね。単
に memptyとだけ書いても、どのインスタンスを
使ってよいか GHCiには分からないので、「ここ
ではリストのインスタンスを使いたい」と伝える
必要があります。ただし、 [Int]や [String]で
はなく、一般的な [a] という型でかまいません。
空リストは任意の型を格納しているかのように振
る舞えるからです。

mconcat にはデフォルト実装が指定されてい
るので、Monoidのインスタンスを作れば mconcatは勝手に付いてきます。リス
トの場合、 mconcatは実はただの concatです。 mconcatは二重リストを取っ
て、その要素を連結した平らなリストを返します。というのも、二重リストの中
の隣接するリストをみな ++で結ぶとそうなるからです。
リストは確かにモノイド則を満たします。複数のリストがあって、それを

mappend、つまり ++で結合していった結果は、どこから結合し始めても一緒で
すよね。だって最後にはどのみちすべてが結合するのですから。空リストが単
位元であることも分かります。以上です。
ところで、モノイド則は a `mappend` b と b `mappend` a が等しいことは
要求していない点に気をつけてください。リストの場合、これは明らかに成り
立っていませんよね。

ghci> "one" ‘mappend‘ "two"
"onetwo"
ghci> "two" ‘mappend‘ "one"
"twoone"

これでいいんです。 3 * 5と 5 * 3は確かに同じですが、それは掛け算の性
質であって、すべてのモノイドがこの性質を満たすわけではありません。実際、
満たさないモノイドがほとんどです。

Product と Sum
数をモノイドにする方法の 1 つはすでに紹介しましたよね。 * を二項演算に

して 1を単位元にする、という方法です。ほかにも、 +を演算にして 0を単位
元にするという方法もあります。

oyaji (20170810-501DAE64)

270 第 12章 モノイド

ghci> 0 + 4
4
ghci> 5 + 0
5
ghci> (1 + 3) + 5
9
ghci> 1 + (3 + 5)
9

0は足し算に関する単位元ですし、足し算は結合法則も満たしますから、モノ
イド則が成り立っています。何の問題もありません。
さて、数をモノイドにする 2つの方法は、どちらも素晴らしく優劣つけがたい
ように思えます。一体どちらを選べばよいのでしょう？ 実は、1つだけ選ぶ必
要はないのです。ある型に対して同じ型クラスのインスタンスを複数定義した
かったら、 newtypeに包んで新しい型をインスタンスにするという方法があり
ましたよね。二兎を追って両方捕まえることができるのです。

Data.Monoidモジュールは、この用途のために、Productと Sumという 2つ
の型をエクスポートしています。 Productの定義はこうです。

newtype Product a = Product { getProduct :: a }

deriving (Eq, Ord, Read, Show, Bounded)

実に単純。 newtypeラッパーと導出したインスタンスがいくつかあるだけで
す。 Productの Monoidインスタンスは、こんな感じです。

instance Num a => Monoid (Product a) where
mempty = Product 1
Product x ‘mappend‘ Product y = Product (x * y)

Productモノイドの memptyは、ただの 1 を Productコンストラクタにくる
んだものです。 mappendは、 Productをパターンマッチしており、中身の数を
掛け算してそれをまたコンストラクタにくるんでいます。そして、見てのとお
り、 Num aという型クラス制約が付いています。すでに Numのインスタンスで
あるようなすべての型 aについて、 Product aは Monoidのインスタンスにな
る、ということです。 Product aをモノイドとして使うには、 newtypeに包ん
だりほどいたりする必要があります。

ghci> getProduct $ Product 3 ‘mappend‘ Product 9
27
ghci> getProduct $ Product 3 ‘mappend‘ mempty
3
ghci> getProduct $ Product 3 ‘mappend‘ Product 4 ‘mappend‘ Product 2
24
ghci> getProduct . mconcat . map Product $ [3,4,2]
24

oyaji (20170810-501DAE64)

12.3 モノイドとの遭遇 271

Sumは Productの近くでまったく同様に定義されていて、インスタンスもよ
く似ています。使い方も同じです。

ghci> getSum $ Sum 2 ‘mappend‘ Sum 9
11
ghci> getSum $ mempty ‘mappend‘ Sum 3
3
ghci> getSum . mconcat . map Sum $ [1,2,3]
6

AnyとAll
モノイドにする方法が 2通りあって、どちらも捨てがたいような型は、 Num a

以外にもあります。 Boolです。1つ目の方法は ||をモノイド演算とし、False

を単位元とする方法です。 ||は論理和を表し、2つの引数のいずれかが Trueな
らば Trueを返し、そうでなければ Falseを返す関数です。 Falseを単位元と
して使えば、確かに ||は Falseを取れば Falseを返し、 Trueを取れば True

を返しますね。これを踏まえて newtypeで Anyが定義され、 Monoidのインス
タンスにされています。 Anyの定義はこうです。

newtype Any = Any { getAny :: Bool }

deriving (Eq, Ord, Read, Show, Bounded)

インスタンス定義はこんな感じです。

instance Monoid Any where
mempty = Any False
Any x ‘mappend‘ Any y = Any (x || y)

これが Anyと呼ばれるのは、 x `mappend` yは xか yのいずれか（any）が
True であった場合に True になるからです。 Any で包んだ Bool を 3 つ以上
mappendした場合も同様で、リストの中身がいずれか 1つでも Trueであった場
合に全体が Trueになります。

ghci> getAny $ Any True ‘mappend‘ Any False
True
ghci> getAny $ mempty ‘mappend‘ Any True
True
ghci> getAny . mconcat . map Any $ [False, False, False, True]
True
ghci> getAny $ mempty ‘mappend‘ mempty
False

Boolを Monoidのインスタンスにするもう 1つの方法は、 Anyのいわば真逆
です。 &&をモノイド演算とし、Trueを単位元とする方法です。論理積は、2つ
の引数がともに Trueである場合に限り Trueを返します。
これがその newtype宣言です。

oyaji (20170810-501DAE64)

272 第 12章 モノイド

newtype All = All { getAll :: Bool }

deriving (Eq, Ord, Read, Show, Bounded)

そしてこれがインスタンス定義です。

instance Monoid All where
mempty = All True
All x ‘mappend‘ All y = All (x && y)

All型の値を mappendした結果は、すべて（all）の引数が Trueであった場
合に限り Trueになります。

ghci> getAll $ mempty ‘mappend‘ All True
True
ghci> getAll $ mempty ‘mappend‘ All False
False
ghci> getAll . mconcat . map All $ [True, True, True]
True
ghci> getAll . mconcat . map All $ [True, True, False]
False

うーむ、面倒です。足し算や掛け算のときもそうでしたが、こんなふうに
newtype にくるんで mappend と mempty を使ったりするんだったら、普通は
Bool の関数を直接呼び出しますよね。 mconcat を Any や All と組み合わせて
使うのはまだマシに見えますが、これだって orや andの関数を使ったほうが簡
単な場合が多そうです。 orは、Boolのリストを取って、リストの要素のいずれ
かが Trueならば Trueを返す関数です。 andは、同じく Boolのリストを取っ
て、すべてが Trueのときに Trueを返す関数です。

Orderingモノイド
Ordering型を覚えていますか？ Orderingは、ものを比較した結果を表す

のに使い、 LT、 EQ、 GTという 3つの値のいずれかを取ります。それぞれ「小
さい」「等しい」「大きい」を表しています。

ghci> 1 ‘compare‘ 2
LT
ghci> 2 ‘compare‘ 2
EQ
ghci> 3 ‘compare‘ 2
GT

これまで見てきたリスト、数、 Boolの場合、モノイドのインスタンスを見つ
けるのは、すでに存在するよく使われている関数の中から候補を探し、モノイド
としての性質を備えているか調べるだけの作業でした。 Orderingの場合、モノ
イドを見抜くのはちょっと難しいです。しかし Orderingの Monoidインスタン

oyaji (20170810-501DAE64)

12.3 モノイドとの遭遇 273

スは、分かってみれば今までのモノイドと同じくごく自然な定義で、しかも便利
なんです。

instance Monoid Ordering where
mempty = EQ
LT ‘mappend‘ _ = LT
EQ ‘mappend‘ y = y
GT ‘mappend‘ _ = GT

このインスタンスは次のような仕組み
になっています。2 つの Ordering 値を
mappendすると、左辺の値が優先されま
すが、左辺が EQである場合は別です。左
辺が EQ である場合、右辺が返り値にな
ります。単位元は EQ です。最初は場当
たり的なルールに見えるかもしれません
が、実はこれは文字列を辞書順で比較す
るときのルールに合わせた定義になって
います。2 つの文字列を辞書順比較するときは、まず先頭の文字を比較し、異
なっていた場合は直ちに辞書順が決まります。ところが、先頭の文字が同じだっ
た場合は、次の文字を比較し、……と繰り返す必要がありますね。
例えば、oxと onという単語を辞書順で比較するときは、まず先頭の文字を比

較し、それらは同じなので 2文字目の比較に進みます。すると、xは nより辞書
順が大きいので、単語の順序も oxは onより大きかったことが分かります。 EQ

が単位元とされているのは、「2つの単語の同じ位置に同じ文字を挿入しても辞
書順は変化しない」ことに対応すると考えれば、直感的に理解できるのではない
でしょうか。例えば、oixも oinより辞書順が大きいわけです。

Orderingの Monoidインスタンスでは x `mappend` yは y `mappend` xと
一致しない、という点も注意が必要です。左辺が EQでない限り左辺が優先され
るので、 LT `mappend` GTは LTを返しますが、 GT `mappend` LTは GTにな
ります。

ghci> LT ‘mappend‘ GT
LT
ghci> GT ‘mappend‘ LT
GT
ghci> mempty ‘mappend‘ LT
LT
ghci> mempty ‘mappend‘ GT
GT

では、このモノイドはどういうときに便利なのでしょう？ 例えば、2 つの文
字列を引数に取り、その長さを比較して Orderingを返す関数を書きたいとしま

oyaji (20170810-501DAE64)

274 第 12章 モノイド

しょう。ただし、2つの文字列の長さが等しいときは、直ちに EQを返すのでは
なくて、2つの文字列を辞書順比較することとします。
こう書くのが 1つの手です。

lengthCompare :: String -> String -> Ordering
lengthCompare x y = let a = length x ‘compare‘ length y

b = x ‘compare‘ y
in if a == EQ then b else a

長さの比較結果に a、辞書順の比較結果に bという名前をつけ、長さが等しけ
れば辞書順を返しています。
しかし、 Orderingはモノイドであるという知識を使えば、この関数はずっと

シンプルに書けるんです。

import Data.Monoid

lengthCompare :: String -> String -> Ordering
lengthCompare x y = (length x ‘compare‘ length y) ‘mappend‘

(x ‘compare‘ y)

試してみましょう。

ghci> lengthCompare "zen" "ants"
LT
ghci> lengthCompare "zen" "ant"
GT

mappendは、左辺が EQでなければ左辺、EQであれば右辺を返すのでしたね。
ですから、優劣をつける場合に重視したい比較条件を左辺に置けばよいのです。
さて、今度は単語の中の母音の数も比較して、それを 2番目に重要な条件にした
くなったとしましょう。ならば、こう修正すればよろしい。

import Data.Monoid

lengthCompare :: String -> String -> Ordering
lengthCompare x y = (length x ‘compare‘ length y) ‘mappend‘

(vowels x ‘compare‘ vowels y) ‘mappend‘
(x ‘compare‘ y)

where vowels = length . filter (‘elem‘ "aeiou")

vowel は、文字列中の母音の数を返す補助関数です。 vowel は、まず文字
列 "aeiou" に含まれる文字かどうかで引数の文字列をフィルタし、その上で
lengthを取るという仕組みになっています。

ghci> lengthCompare "zen" "anna"
LT
ghci> lengthCompare "zen" "ana"
LT
ghci> lengthCompare "zen" "ann"
GT

oyaji (20170810-501DAE64)

12.3 モノイドとの遭遇 275

1つ目の例では、 "zen"のほうが "anna"より短いですから、 LTが返ってい
ます。2つ目の例では、長さは等しいですが、2つ目の文字列のほうが母音が多
いので、やはり LTが返っています。3つ目の例では、どちらの文字列も同じ長
さで母音の数も等しいため辞書順比較が発生し、 "zen"が勝っています。
このように Orderingモノイドは、さまざまな条件でものの大小を比較し、条
件そのものに「最も重視すべき条件」から「どうでもいい条件」まで優先順位を
つけて最終判定を出すのに使える、とても便利なものなんです！

Maybeモノイド
Maybe aも複数の方法でモノイドになれます。 Maybe aがどのような Monoid

インスタンスになるのか、どんなことに使えるのか、見ていきましょう。
Maybe aをモノイドにする 1つ目の方法は、型引数 aがモノイドであるとき

に限り Maybe aもモノイドであるとし、 Maybe aの mappendを、 Justの中身
の mappend を使って定義することです。 Nothing を単位元とし、 mappend さ
れる 2 つの値のうち片方が Nothing であれば別の片方の値を使う、とします。
これがインスタンス宣言です。

instance Monoid a => Monoid (Maybe a) where
mempty = Nothing
Nothing ‘mappend‘ m = m
m ‘mappend‘ Nothing = m
Just m1 ‘mappend‘ Just m2 = Just (m1 ‘mappend‘ m2)

型クラス制約を見てください。 a が Monoid のインスタンスである場合に限
り、 Maybe aを Monoidのインスタンスとする、と書いてあります。「何か」と
Nothing を mappend した結果は、その「何か」になります。2 つの Just 値を
mappendした場合は、2つの Justの中身を mappendして、また Justの中に入
れます。これができるのも、型クラス制約によって Just の中身の型は Monoid

のインスタンスであることが保証されているからこそです。

ghci> Nothing ‘mappend‘ Just "andy"
Just "andy"
ghci> Just LT ‘mappend‘ Nothing
Just LT
ghci> Just (Sum 3) ‘mappend‘ Just (Sum 4)
Just (Sum {getSum = 7})

これは、失敗するかもしれない計算の返り値をモノイドとして扱いたい場合に
便利です。このインスタンスがあるおかげで、個々の計算が失敗したかどうかを
いちいち覗き込まずに済みます。 Nothing か Just かの判定などせずに、その
まま普通のモノイドとして扱ってやればよいのです。

oyaji (20170810-501DAE64)

276 第 12章 モノイド

でも、 Maybeの中身が Monoidのインスタンスではなかったら？ そういえば、
中身がモノイドであることを利用したのは mappend の両辺が Just である場合
だけでしたね。中身がモノイドかどうか分からない状態では、 mappendは使え
ません。どうすればいいでしょう？ 1つの選択は、第一引数を返して第二引数
は捨てる、と決めておくことです。この用途のために First aというものが存
在します。これが定義です。

newtype First a = First { getFirst :: Maybe a }

deriving (Eq, Ord, Read, Show)

Maybe aが newtypeで包まれていますね。 Monoidインスタンスはこうです。

instance Monoid (First a) where
mempty = First Nothing
First (Just x) ‘mappend‘ _ = First (Just x)
First Nothing ‘mappend‘ x = x

memptyは、ただ単に Nothingを First で包んだものです。さて、 mappend

は、第一引数が Just 値なら第二引数を無視します。もし第一引数が Nothing

なら、第二引数が Just であろうと Nothing であろうと、それが返り値になり
ます。

ghci> getFirst $ First (Just 'a') ‘mappend‘ First (Just 'b')
Just 'a'
ghci> getFirst $ First Nothing ‘mappend‘ First (Just 'b')
Just 'b'
ghci> getFirst $ First (Just 'a') ‘mappend‘ First Nothing
Just 'a'

Firstは、いくつもある Maybe値にどれか 1つでも Justがあるか調べたい
ときに役立ちます。 mconcat関数が便利ですよ。

ghci> getFirst . mconcat . map First $ [Nothing, Just 9, Just 10]
Just 9

逆に、2 つの Just を mappend したときに後のほうの引数を優先するような
Maybe aが欲しい、という人のために、 Data.Monoidには Last a型も用意さ
れています。これは First aとそっくりな働きをしますが、ただし mappendや
mconcat を使ったときには Nothing でない最後の値が採用されるというもの
です。

ghci> getLast . mconcat . map Last $ [Nothing, Just 9, Just 10]
Just 10
ghci> getLast $ Last (Just "one") ‘mappend‘ Last (Just "two")
Just "two"

oyaji (20170810-501DAE64)

12.4 モノイドで畳み込む 277

12.4 モノイドで畳み込む
いろんなデータ構造の上に畳み込みを定義したい……、そういうときにもモノ

イドが活躍します。これまでは、リストの畳み込みしか紹介しませんでした。し
かし、畳み込みできるデータ構造はリストだけではありません。むしろ、ほとん
どすべてのデータ構造の上に畳み込みを定義できるんです。木構造などは畳み
込みしやすいデータ構造の典型です。
畳み込みと相性の良いデータ構造は実にたくさんあるので、 Foldable型クラ

スが導入されました。 Functor が関数で写せるものを表すように、 Foldable

は畳み込みできるものを表しています。 Foldableは Data.Foldableモジュー
ルの中にあります。このモジュールが提供する関数群の名前は Preludeの関数
と衝突するので、 Data.Foldableモジュールは修飾付きインポートをするのが
おすすめです。

import qualified Data.Foldable as F

貴重なタイプ数を節約するため、修飾子の名前は Fにしました。
この型クラスが定義する関数にはどんなものがあるのでしょう。どれどれ、

foldr、foldl、foldr1、それから foldl1……って、あれ？ どの関数も前に
見ましたよ。何が新しいんでしょう？ Foldableの foldrと Preludeの foldr

の型を比べてみましょう。

ghci> :t foldr
foldr :: (a -> b -> b) -> b -> [a] -> b
ghci> :t F.foldr
F.foldr :: (F.Foldable t) => (a -> b -> b) -> b -> t a -> b

ああ！ どうやら、Preludeの foldrはリストを取って畳み込みを行う関数で
ある一方、 Data.Foldableの foldrは、畳み込みができる型ならリストに限ら
ず、何でも受け付ける関数のようですね！ 期待どおり、どちらの foldrも、リ
ストに対してはまったく同じ動作をします。

ghci> foldr (*) 1 [1,2,3]
6
ghci> F.foldr (*) 1 [1,2,3]
6

畳み込みをサポートするデータ構造はリスト以外にもあります。例えば、みん
な大好き Maybeもそうです！

ghci> F.foldl (+) 2 (Just 9)
11
ghci> F.foldr (||) False (Just True)
True

oyaji (20170810-501DAE64)

278 第 12章 モノイド

しかし、 Maybeを畳み込むのはそこまで面白いものではありません。 Maybe

は単に、Just値だったら 1要素のリストのように振る舞い、Nothing値なら空
リストのように振る舞うだけです。もう少し複雑なデータ構造を試してみよう
じゃないか！
第 7章で木構造を作りましたよね？ そのときの定義はこんな感じでした。

data Tree a = EmptyTree | Node a (Tree a) (Tree a) deriving (Show)

木は、値を持たない空の木か、1つの値と 2つの木を持つノードからなる再帰
的構造として定義しました。木を定義した後、木を Functorのインスタンスに
することで、木に関数を fmapできるようにしました。今度は、木を Foldable

のインスタンスにすることで木に畳み込みが使えるようにしましょう。
ある型コンストラクタを Foldableのインスタンスにする 1つの方法は、直接

foldrを実装することです。けれども、通常はもっと簡単な方法があります。そ
れは foldMap 関数を実装することです。 foldMap 関数は、他の fold 系の関数
と同様に Foldable型クラスの一員で、次のような型を持っています。

foldMap :: (Monoid m, Foldable t) => (a -> m) -> t a -> m

foldMap関数の第一引数は、「 Foldableにしたいコンテナの中身（ a）の型
の値を取って、モノイドを返す」関数です。 foldMap関数の第二引数は、 a型
の値を含む Foldable構造自身です。 foldMap関数は、まず第二引数の構造体
に第一引数の関数を mapして、構造体の中身をごっそりモノイド値に変えます。
次にそれらモノイド値を mappendして単一のモノイド値へと結合します。この
動作は何だか不自然に思えるかもしれませんが、すぐに、これは実に簡単に実装
できる仕様なのだと分かりますよ。そしてこの foldMapさえあれば、ある型を
Foldableにできます！ つまり、ある型の foldMapさえ定義すれば、その型の
foldrや foldlは自動的に手に入るのです。

Treeを Foldableのインスタンスにする方法は、こうです。

instance F.Foldable Tree where
foldMap f EmptyTree = mempty
foldMap f (Node x l r) = F.foldMap f l ‘mappend‘

f x ‘mappend‘
F.foldMap f r

さて、僕らの木構造の要素を取ってモノイド値を返す関数を誰かがくれたとし
ます。その関数を使って、木構造全体を 1つのモノイド値に帰着するにはどうす
ればいいのでしょう？ fmap のときは、与えられた関数をその場でノードに適
用し、さらに左右 2つある部分木にも再帰的に fmapを適用しました。今度は、
関数を mapするだけではなく、その結果を mappendして単一のモノイド値にす
る作業も必要です。まあ、やってみましょう。まず空の木の場合、つまり、値も

oyaji (20170810-501DAE64)

12.4 モノイドで畳み込む 279

なければ部分木もない独りぼっちの寂しく悲しい木の場合には、モノイド作りの
材料が何もないというのなら memptyになるしかないですね。
空じゃない木（ Node ）の場合はもう

ちょっと面白くなります。こちらは 2つ
の部分木と 1つの値を含みます。この場
合は、まず左右の部分木に再帰的に fを
foldMapしましょう。それぞれ単一のモ
ノイド値が返ってくるはずですね。それ
からノードが持っている値にも fを適用
します。これで 3 つのモノイド値（2 つ
は部分木からきたもので、1 つはノード
内の値に fを適用してできたもの）が揃
いました。あとはこの 3つを 1つの値に畳むだけです。ここは mappendの出番
ですね。まず左部分木、次にノードの値、最後に右部分木という順番にさりげな
い配慮が光ります。

foldMap の実装自体は、値をモノイドに変換する関数を必要としなかった
ことに気づきましたか？ 変換関数は foldMap に引数として与えられるので、
foldMapの実装に必要なのは、変換関数は所与のものとして、どこに適用して結
果のモノイドをどう結合するのかを決めてやることなのです。
こうして僕らの木は Foldable インスタンスになりました。これで foldr と

foldlも無料で手に入ったわけです！ 例えばこんな木を作ります。

testTree = Node 5
(Node 3

(Node 1 EmptyTree EmptyTree)
(Node 6 EmptyTree EmptyTree)

)
(Node 9

(Node 8 EmptyTree EmptyTree)
(Node 10 EmptyTree EmptyTree)

)

ルートに 5があって、左のノードは 3で、その左右に 1と 6があります。ルー
トの右のノードは 9で、その左の子は 8で、一番右に 10があるわけです。 Tree

が Foldableインスタンスであるおかげで、リストに使える畳み込み関数はすべ
てこの Treeにも使えます。

ghci> F.foldl (+) 0 testTree
42
ghci> F.foldl (*) 1 testTree
64800

oyaji (20170810-501DAE64)

280 第 12章 モノイド

foldMapは Foldableのインスタンスを定義するためだけの存在ではありま
せん。 Foldableな構造を単一のモノイド値に畳みたいときには実際役に立ちま
す。例えば、この木の中に 3に等しい数があるか調べたかったら、こう書けばよ
ろしい。

ghci> getAny $ F.foldMap (\x -> Any $ x == 3) testTree
True

ここで \x -> Any $ x == 3は、数を取って Any にくるまれた Boolという
モノイド値を返す関数です。 foldMapはこの関数を木のすべての要素に適用し
てから、 mappendを使って 1つのモノイド値に畳んでくれるわけです。例えば
こんなことをすると、

ghci> getAny $ F.foldMap (\x -> Any $ x > 15) testTree
False

木の中のすべてのノードの値は、ラムダ式の中の関数を適用された結果 Any

False に変わります。複数の Anyを mappendして Trueが返るのは、そのうち
1 つでも True が含まれる場合に限られます。あの木には 15 より大きい要素は
含まれていませんから、 Falseが返ってくるのは当然の結果です。
木構造をいともたやすくリストに変換できる技もあります。 \x -> [x] を

foldMapするのです。このラムダ式は、木の各要素を単一要素のリストに変換し
ます。それから mappendがこれらリストモノイドの間に適用され、元の木の要
素をすべて含んだリストという単一のモノイドが出来上がります。

ghci> F.foldMap (\x -> [x]) testTree
[1,3,6,5,8,9,10]

しかもこれらの技は、木構造に限らず、あらゆる Foldableなデータ構造に適
用できます！

oyaji (20170810-501DAE64)

第13章
モナドがいっぱい

第 7章で初めてファンクターの話をしたとき、ファンクターは関数で写せる値
を表す便利な概念であることを見ました。第 11章ではファンクターを一歩拡張
してアプリカティブファンクターを導入し、ある種のデータ型は、文脈を持った
値だと解釈できるようになりました。アプリカティブファンクターを使えば、そ
のような文脈を保ったまま、通常の関数をそれらの値に適用できるのでした。
この章ではモナドを紹介します。モナドは強化されたアプリカティブファン

クターです。ちょうど、アプリカティブファンクターが強化されたファンクター
であったように。

13.1 アプリカティブファンクターを強化する
ファンクターを勉強し始めたとき、

Functor 型クラスに属するさまざまな
型は、すべて関数で写せることを見まし
た。ファンクターを導入した動機は、「 a

 -> b 型の関数と、 f a というデータ
型があるとして、どうすれば当の関数を
f a から f b への関数に変換できるだろう？」というものでした。 Maybe a 、
リスト [a]、 IO aなどに対し、関数で写す方法を見てきました。 a -> b型の
関数はなんと「 r -> a型の関数」を写すこともでき、その結果は「 r -> b型
の関数」になることも見ました。あるデータ型を関数で写したときの挙動を指定
するには、 fmapの型を見てから、

fmap :: (Functor f) => (a -> b) -> f a -> f b

Functor インスタンスを書き、 fmap がそのデータ型を適切に処理できるよう
にすればよいのでした。

281

oyaji (20170810-501DAE64)

282 第 13章 モナドがいっぱい

それから、いくつかの疑問とともに、ファンクターを改良できる可能性が浮
かび上がってきました。関数 a -> bが、はじめからファンクターに包まれてい
たらどうする？ 例えば Just (*3)があったとして、それを Just 5に適用する
には？ その Just 5が急に Nothingに変わったら？ Maybeの代わりにリスト
[(*2),(+4)]があったとして、それを [1,2,3]に適用するには？ そもそも、そ
んなの動くの？ これらを解決するために、 Applicative 型クラスを導入しま
した。

(<*>) :: (Applicative f) => f (a -> b) -> f a -> f b

Applicative型クラスでは、通常の値をデータ型の中に入れる操作も可能に
なったのでした。例えば、 1を Just 1に変えたり、 [1]に変えたり、はたまた
「何も副作用を起こさず 1を返す I/Oアクション」に変えたりできるのでした。
この変換をしてくれる関数の名前は pureというのでしたね。
アプリカティブ値は、変な値、専門用語でいうと「文脈の付加された値」だ
とみなせます。例えば、文字 'a' はただの文字ですが、 Just 'a' は何らかの
文脈が付いています。 Char型の代わりに Maybe Char型がきたとしたら、この
値は文字かもしれないし文字がないことを表すのかもしれないということです。
Applicative 型クラスは、これら文脈の付いた値に、文脈を保ったまま普通の
関数を適用させてくれます。例を見てみましょう。

ghci> (*) <$> Just 2 <*> Just 8
Just 16
ghci> (++) <$> Just "exdeath" <*> Nothing
Nothing
ghci> (-) <$> [3,4] <*> [1,2,3]
[2,1,0,3,2,1]

このようにアプリカティブ値として扱い始めると、 Maybe aは失敗するかも
しれない計算、 [a]は複数の答があり得る計算（非決定性計算）、 IO aは副作
用を伴う計算、などの意味を帯びてくるのでした。
さて、モナドはある願いを叶えるための、アプリカティブ値の自然な拡張で
す。その願いとは、「普通の値 aを取って文脈付きの値を返す関数に、文脈付き
の値 m a を渡したい」というものです。言い換えると、 a -> m b 型の関数を
m a型の値に適用したい、ということ。ぶっちゃけると、この関数が欲しいって
ことです。

(>>=) :: (Monad m) => m a -> (a -> m b) -> m b

さて、変な値と、普通の値を取るけど変な値を返す関数があったとき、どう
やってその値を関数に食わせればいいのでしょう？ これがモナドの一番の関心
事です。これからは f aの代わりに m aと書くことにします。 mは Monadの頭

oyaji (20170810-501DAE64)

13.2 Maybeから始めるモナド 283

文字です。呼び方は変わりますが、モナドは >>= をサポートするアプリカティ
ブファンクターにすぎません。関数 >>=はバインド（bind）と呼ばれます。
普通の値 aと普通の関数 a -> bだったら、値を関数に食わせるのは造作もな
いことです。単に関数を値に適用すればよろしい。ところが、特定の文脈が付き
まとう値を扱うとなると、その変な値を関数に食わせるとどうなるのか、文脈を
保つにはどうするのか、ちゃんと考えないといけません。でも、やってみれば簡
単だということが分かりますよ！

13.2 Maybeから始めるモナド

モナドが何者なのかぼんやり分かっ
てきたところで、具体例を見ていきま
しょう。実は Maybe はモナドだったん
です、と言っても誰も驚かないでしょう
ね。このセクションでは、モナドとして
の Maybeがどういう働きをするのか、詳
しく見ていきましょう。

NOTE 先に進む前に、アプリカティブファ
ンクターはちゃんと理解しておる
か？ アプリカティブファンクター
については第 11 章で学んだじゃろ
う。さまざまな Applicative イン
スタンスはなぜ動くのか、それが表
す計算の種類は何か、身に付けてお
くのじゃ。アプリカティブファンク
ターの知識を踏まえ、深めていくこ
とだけがモナドの奥義に至る道なの
じゃからな。

Maybe a型の値は a型の値を表していますが、失敗する可能性という文脈付
きです。 Just "dharma"という値は、文字列 "dharma"がそこに実在すること
を意味します。 Nothingという値は、無を、あるいは文字列が何らかの計算の
結果だとしたら、その計算が失敗したことを表しています。
ファンクターとして見た Maybeに対して関数を fmapすると、その Maybeが

Just値だった場合には、与えた関数が Justの中身の値に適用されるのでした。
Nothingの場合は、 Nothingのままでした。だって、関数を適用する相手がい
ないんですから！

ghci> fmap (++"!") (Just "wisdom")
Just "wisdom!"

oyaji (20170810-501DAE64)

284 第 13章 モナドがいっぱい

ghci> fmap (++"!") Nothing
Nothing

アプリカティブファンクターとしての Maybe の機能も似たようなものです。
ただし、アプリカティブファンクターになると、値だけでなく、値に適用する関
数のほうにも文脈が付きます。 Maybeの Applicativeインスタンスは、<*>を
使って Maybeの中の関数を Maybeの中の値に適用しようとすると、関数と値が
両方 Justならば結果が Justになる、そうでなければ結果は Nothingになる、
というものでした。当然ですよね。関数か値のどちらかが欠けていれば、無から
適用結果をでっち上げるわけにはいきませんから、失敗を伝播させる必要があり
ます。

ghci> Just (+3) <*> Just 3
Just 6
ghci> Nothing <*> Just "greed"
Nothing
ghci> Just ord <*> Nothing
Nothing

アプリカティブ・スタイルを使って普通の関数を Maybe 値に適用するとき
も、同じやり方でうまくいきます。すべての引数が Just でなければ、結果は
Nothingです！

ghci> max <$> Just 3 <*> Just 6
Just 6
ghci> max <$> Just 3 <*> Nothing
Nothing

それではいよいよ、 Maybeにとっての >>=をどう定義すればいいか考えてい
きましょう。 >>=は、「モナド値」と「普通の値を取る関数」を引数に取り、何
とかしてその関数をモナド値に適用してモナド値を得ます。関数のほうは普通
の値しか取れないのに、どうやってそんな芸当ができるのでしょう？ その答を
出すには、モナド値の文脈に立ち入る必要があります。
この場合、 >>=は Maybe a型の値と a -> Maybe b型の関数を取り、この関
数をどうにかして Maybe aに適用するわけです。これをどうやって実現してい
るのか探るには、 Maybeがアプリカティブファンクターであるという知識が役
立ちます。さて、関数 \x -> Just (x+1)を考えましょう。これは数を取り、そ
れに 1を足して、結果を Justに包みます。

ghci> (\x -> Just (x+1)) 1
Just 2
ghci> (\x -> Just (x+1)) 100
Just 101

oyaji (20170810-501DAE64)

13.2 Maybeから始めるモナド 285

この関数に 1を食わせると、 Just 2に評価されます。 100を食わせると、結
果は Just 101です。実に直感的ですね。じゃあ、この関数に Maybe値を食わせ
るにはどうしたらいいでしょう？ Maybeのアプリカティブファンクターとして
の振る舞いから類推すると、この問に答えるのは極めて簡単です。 Just値がき
たときは Justの中身を取り出し、それを関数に食わせればよろしい。 Nothing

値がきたときは、関数はあるものの、それに適用すべき値がナッシングというわ
けですから、結果も Nothingとせざるを得ません。
ひとまず >>= と呼ぶのはやめて applyMaybe という名前にしましょうか。こ
れは「 Maybe a型の値」と「 Maybe bを返す関数」を引数に取り、どうにかし
てその関数を Maybe aに適用してくれる関数です。コードはこちら。

applyMaybe :: Maybe a -> (a -> Maybe b) -> Maybe b
applyMaybe Nothing f = Nothing
applyMaybe (Just x) f = f x

それでは使ってみましょう。 Maybe 値が左、関数が右にくるように、中置演
算子表記で使ってみましょう。

ghci> Just 3 ‘applyMaybe‘ \x -> Just (x+1)
Just 4
ghci> Just "smile" ‘applyMaybe‘ \x -> Just (x ++ " :)")
Just "smile :)"
ghci> Nothing ‘applyMaybe‘ \x -> Just (x+1)
Nothing
ghci> Nothing ‘applyMaybe‘ \x -> Just (x ++ " :)")
Nothing

この例では、 Just値と関数を引数に applyMaybeを呼び出したときは、単に
Justの中の値に関数が適用されていますね。 Nothing値と関数を引数に呼び出
すと、全体の結果が Nothingになっています。では、関数のほうが Nothingを
返す場合はどうでしょう？

ghci> Just 3 ‘applyMaybe‘ \x -> if x > 2 then Just x else Nothing
Just 3
ghci> Just 1 ‘applyMaybe‘ \x -> if x > 2 then Just x else Nothing
Nothing

確かに期待どおりの結果ですね。 applyMaybe の左辺のモナド値が Nothing

である場合には、全体の結果は Nothing になります。それから右辺の関数が
Nothingを返した場合も、結果は Nothingです。これは Maybeをアプリカティ
ブとして使ったときの挙動とよく似ていますね。式のどこかに Nothingがあっ
たら、答も Nothingになるという挙動です。
どうやら「変な値」に「普通の値を取って変な値を返す関数」を適用する方法
が見えてきましたね。この例では「 Maybeは失敗したかもしれない計算を表す」

oyaji (20170810-501DAE64)

286 第 13章 モナドがいっぱい

というイメージを心に描いて設計することで、これが実現できました。
「で、これって何が便利なの？」という疑問が聞こえてきそうです。実際、ア
プリカティブファンクターのほうがモナドよりも強力に思えるかもしれません。
だってアプリカティブファンクターは、ごく普通の関数を文脈付きの値に適用で
きるようにしてくれるのですから。ところがどっこい、モナドだって同じことが
できるんです。なにしろモナドはアプリカティブファンクターのアップグレー
ド版ですから。さらに、モナドにはできてアプリカティブファンクターにはで
きないこともあるんです。この章ではそんなモナドの力の秘密を学んでいきま
しょう。

Maybeモナドは少し置いといて、まずは、モナドが属する型クラスを見てい
きましょう。

13.3 Monad型クラス
ファンクターには Functor型クラスがあり、アプリカティブファンクターに

は Applicative型クラスがあるように、モナドにも型クラスがあります。その
名も Monad！ って、まんまやん！

class Monad m where
return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b
x >> y = x >>= _ -> y

fail :: String -> m a
fail msg = error msg

最初の行は class Monad m where となっ
ています。あれ、でもモナドはアプリカティブ
ファンクターの強化版のはずでは？ Monadの
インスタンスは必ず Applicativeのインスタ
ンスでもあるよう、クラス宣言の前に、class
(Applicative m) = > Monad m where とい
う型クラス制約があるべきではないでしょう
か。うむ、確かにそうなんです。でも、Haskell
の誕生当時には、アプリカティブファンクター
が Haskell と相性がいいとは誰も思わなかっ
たのです。それでも、すべてのモナドはアプ

oyaji (20170810-501DAE64)

13.3 Monad型クラス 287

リカティブファンクターであることに間違いはありません。たとえ Monadのク
ラス宣言にそうは書いていないとしても。

Monad型クラスの 1つ目のメンバ関数は returnです。これは Applicative

型クラスの pureと同じものです。だから、名前は違っていても、皆さんすでに
お馴染みのはずです。 returnの型は (Monad m) => a -> m aです。 return

は、値を取って、その値を再現できるような最小のデフォルト文脈に入れます。
returnは、第 8章で I/Oを扱ったとき、すでに登場していましたね。そのとき
は、値を返すだけで何も I/Oをしない、なんちゃって I/Oアクションを作るた
めに returnを使ったのでした。 Maybeの場合は、 returnは値を Justに入れ
て返します。

NOTE 繰り返しになりますが、Haskellの returnは他の多くの言語にある returnとは全然
違うものです。 returnは関数の実行を中断させる命令などではありません。普通の
値を文脈に入れて返す、ただの関数です。

次の関数は >>=、またの名をバインドです。これは関数適用に似ていますが、
普通の値を取って通常の関数を適用するのではなく、モナド値（つまり、文脈
付きの値）を取って、それに「通常の値を取るがモナド値を返す関数」を適用し
ます。
それから、 >>があります。これにはデフォ

ルト実装があるので、あまり詳しくは解説し
ません。 Monadインスタンスを実装するとき
も、このデフォルト実装を上書きすることは
滅多にありません。 >> については 293 ペー
ジ「ロープの上のバナナ」の項で詳しく見て
いきます。

Monad型クラスの最後の関数は failです。
ユーザがコードの中から fail を呼び出すこ
とは決してなく、もっぱらHaskellシステムが呼び出します。 failはモナド用
の特別な構文において、パターンマッチに失敗してもプログラムを異常終了させ
ず、失敗をモナドの文脈の中で扱えるようにするためのものです。これについて
は後で見ます。今は failをさほど気にしなくても大丈夫です。
これで Monad型クラスがどんなものか分かりました。では、 Maybeの Monad

インスタンスの実装を見ていきましょう！

oyaji (20170810-501DAE64)

288 第 13章 モナドがいっぱい

instance Monad Maybe where
return x = Just x
Nothing >>= f = Nothing
Just x >>= f = f x
fail _ = Nothing

return は pure と同じですから、目をつぶっていても書けますね。
Applicative型クラスのときと同様、Justに包むだけです。関数 >>=は、さっ
きの applyMaybe と同じです。左辺の Maybe a を右辺の関数に食わせるとき、
失敗するかもしれない計算という文脈の意味を考えれば、左辺に Nothingがき
ていれば Nothingを返す、 Justがきていれば中身を取り出して fを適用する、
という設計になります。
モナド化した Maybeで遊んでみましょう。

ghci> return "WHAT" :: Maybe String
Just "WHAT"
ghci> Just 9 >>= \x -> return (x*10)
Just 90
ghci> Nothing >>= \x -> return (x*10)
Nothing

1行目は特に目新しい点はありません。僕らはもう Maybeの pureは使ったこ
とがあるし、 returnは pureの別名にすぎないと知っているわけですから。
次の 2 つの行は >>= の用例です。 Just 9 を \x -> return (x*10) に食わ
せたとき、 xが 9という値を取るのが分かりますか？ まるで、パターンマッチ
を使わずに Maybeから値を取り出せるかのようにも見えます。しかも、 Maybe

としての文脈は失われていません。その証拠に、左辺が Nothing に変わると、
>>=の結果もちゃんと Nothingになります。

13.4 綱渡り
さて、失敗するかもしれない計算とい

う文脈を損なうことなく、Maybe a型の
値に a -> Maybe b型の関数を適用する
方法が分かったところで、 >>=を繰り返
し使って Maybe a 値を返す複数の計算
を扱う方法を見ていきましょう。
養魚場で働くピエールは休暇を取り、
綱渡りに挑戦するようです。ピエールの
綱渡りの腕前は、下手ではないという程
度なのですが、1 つ悩みがありました。

oyaji (20170810-501DAE64)

13.4 綱渡り 289

バランス棒に鳥がとまりに来るんです！ 鳥たちは飛んできてはちょっと一休み。
仲間とおしゃべりして、またパンくずを探しに飛んでいきます。バランス棒の左
右にとまっている鳥の数が同じなら、さほど問題にはならないのですが、たまに
鳥たちは片方の端に集まりたい気分になるらしく、そうなるとピエールはバラン
スが取れなくなって無様に転落してしまいます（ピエールは安全ネットを使って
いるので、怪我の心配はありません）。
さて、棒の左右にとまった鳥の数の差が 3以内であれば、ピエールはバランス

を取れるものとしましょう。例えば、右に 1羽、左に 4羽の鳥がとまっているな
ら大丈夫。だけど左に 5羽目の鳥がとまったら、ピエールはバランスを崩して飛
び降りる羽目になります。
では、鳥たちがバランス棒の左右の端に飛んできたり飛び去ったりするようす

をシミュレートし、一定数の鳥たちが来たり去ったりした後も、ピエールが綱の
上にいるかどうか判定するプログラムを書いてみましょう。例えば、まず左側に
1羽の鳥が来て、それから右側に 4羽来て、それから左側の鳥が飛び立った後、
ピエールがどうなっているのかを知りたいわけです。

ひたすらコーディング
バランス棒は、単に整数のペアとして表現できます。ペアの第一成分は左側に

いる鳥の数を、第二成分は右側にいる鳥の数を表すことにしましょう。

type Birds = Int
type Pole = (Birds, Birds)

まず、 Intの型シノニムを作り、 Birdsと名づけます。これは、そこにいる
鳥の数を表す整数です。それから (Birds, Birds) の型シノニムを Pole と名
づけます（ポーランド系の苗字と混同しないでくださいね）。
では、鳥の数を取って、バランス棒の左側もしくは右側に鳥をとまらせる関数

を作りましょうか。

landLeft :: Birds -> Pole -> Pole
landLeft n (left, right) = (left + n, right)

landRight :: Birds -> Pole -> Pole
landRight n (left, right) = (left, right + n)

試してみましょう。

ghci> landLeft 2 (0, 0)
(2,0)
ghci> landRight 1 (1, 2)
(1,3)
ghci> landRight (-1) (1, 2)
(1,1)

oyaji (20170810-501DAE64)

290 第 13章 モナドがいっぱい

鳥を飛び立たせる処理は、負の数の鳥がとまる処理で代用します。 Poleに鳥
をとまらせる関数は Pole を返すので、 landLeft と landRight は好きなだけ
合成して使えます。

ghci> landLeft 2 (landRight 1 (landLeft 1 (0, 0)))
(3,1)

まず、 landLeft 1を (0, 0)に適用すると (1, 0)になります。それから右
側に鳥が 1羽とまったら、 (1, 1)になります。さらに左側に鳥が 2羽とまった
ら、 (3, 1) になります。Haskell の文法では、関数適用はまず関数を書いて、
次に引数を書きますが、ここではどうも、バランス棒を先に書いて鳥をとまらせ
る関数が後のほうが読みやすそうですね。そこで、こんな関数を作ってみます。

x -: f = f x

これで関数を適用するのに、まず引数、次に関数を書けるようになります。

ghci> 100 -: (*3)
300
ghci> True -: not
False
ghci> (0, 0) -: landLeft 2
(2,0)

この形式を使えば、鳥を次々にとまらせる処理をさっきよりも読みやすく書け
ます。

ghci> (0, 0) -: landLeft 1 -: landRight 1 -: landLeft 2
(3,1)

実にスゴイ！ 先ほど普通の関数適用を使って書いたのと同じ処理ですが、よ
り直感的になっていますね。この記法なら、まず (0, 0)から始めて、1羽の鳥
が左に、1羽が右に、そして 2羽が左にとまった、ということがすぐ分かります。

うゎぁあああああ落ちるぅぅうううああああ
ここまではよし。でも、片方に一気に 10羽の鳥が来たら？

ghci> landLeft 10 (0, 3)
(10,3)

左に 10 羽もいるのに右には 3 羽しかいないですって？ 確実にピエールは宙
を舞う羽目になります。この場合は明らかですが、じゃあ、こういう順番で鳥が
来たらどうでしょう？

ghci> (0, 0) -: landLeft 1 -: landRight 4 -: landLeft (-1) -: ⇨
landRight (-2)

(0,2)

oyaji (20170810-501DAE64)

13.4 綱渡り 291

どこにも問題なさそうに見えますが、気をつけて 1ステップずつ評価してみれ
ば、右側に 4 羽の鳥がいるけど左側には鳥がいない瞬間があることが分かるで
しょう。危うく見逃すとこでした！ これを解決するためには、 landLeft関数
と landRight関数に手を入れる必要があります。

landLeft関数、 landRight関数は、失敗を表現できる必要があります。ピ
エールがまだバランスを取れている間は新しいバランス棒の状態を返すが、鳥の
とまり方が偏りすぎた場合には失敗を返すようにしたいのです。失敗を表現し
たいとなったら、これはもう Maybeを使うしかないですね！ さっそく書き直し
てみましょう。

landLeft :: Birds -> Pole -> Maybe Pole
landLeft n (left, right)

| abs ((left + n) - right) < 4 = Just (left + n, right)
| otherwise = Nothing

landRight :: Birds -> Pole -> Maybe Pole
landRight n (left, right)

| abs (left - (right + n)) < 4 = Just (left, right + n)
| otherwise = Nothing

landLeft関数、landRight関数は、Poleでなくて Maybe Poleを返すよう
になりました。鳥の数と、更新前のバランス棒の状態を引数に取るのは以前と同
様ですが、たくさん鳥がきたときにはバランスを失ったピエールを放り出す検査
が入るようになりました。このコードでは、ガード記法を使って、更新後の左右
の鳥の数の差が 4より小さいか判定しています。もし 4 より小さいなら、新し
いバランス棒の状態を Justに包んで返します。差が 4以上になった場合は、失
敗を意味する Nothingを返します。
さっそく使ってみましょう。

ghci> landLeft 2 (0, 0)
Just (2,0)
ghci> landLeft 10 (0, 3)
Nothing

ピエールを落っことさずにうまく鳥が置けたら、新しいバランス棒の状態
が Just に入って返ってきます。しかし、片方に鳥がとまりすぎてしまうと、
Nothing が返ってきます。素晴らしい改良です！ が、鳥をとまらせる操作を
合成する能力を失ってしまったのではないでしょうか？ もう、 landLeft 1

(landRight 1 (0, 0))とは書けなくなりました。だって、 Pole型の (0, 0)

に landRight 1 を適用すると、 Pole 型ではなく、 Maybe Pole 型が返ってく
るからです。 landLeft 1は Pole型を取る関数なので、 Maybe Poleは受け付
けてくれません。

oyaji (20170810-501DAE64)

292 第 13章 モナドがいっぱい

何とかして、 Poleを取って Maybe Poleを返す関数に Maybe Poleを渡した
いものです。幸運なことに、 >>=を使えば、 Maybe に対してまさにその操作が
できます。やってみましょう。

ghci> landRight 1 (0, 0) >>= landLeft 2
Just (2,1)

landLeft 2は Pole -> Maybe Pole型の関数でしたね。 landRight 1 (0,

 0)の結果である Maybe Poleは、そのままでは landLeft 2に食わせられない
ので、 >>=を使って、文脈を保ったまま landLeft 2に渡します。 >>=はまさ
に、 Maybe を「文脈付きの値」として扱うための道具だといえるでしょう。現
に、 Nothingを landLeft 2に渡すと、結果は Nothingとなり、失敗が伝搬し
ているのが分かります。

ghci> Nothing >>= landLeft 2
Nothing

このように、通常の値を引数に取る関数にモナド値を渡せる >>= を使うこと
で、「鳥がとまる」という失敗するかもしれない操作を合成できるようになりま
した。鳥がとまる一連のイベントをこのように表現できます。

ghci> return (0, 0) >>= landRight 2 >>= landLeft 2 >>= landRight 2
Just (2,4)

まず returnを使って、バランス棒の状態を Justでくるみました。直接 (0,

 0)に landRight 2を適用するところから始めてもよかったのですが（それで
も結果は同じです）、すべての関数に >>= を使うほうが統一感がありますよね。
Just (0, 0)が landRight 2に食われて Just (0, 2)になります。それがま
た landLeft 2に食われて Just (2, 2)になり……、という具合に続きます。
そういえば、ピエール・シミュレーターに「失敗するかもしれない計算という

文脈」を導入する前に出てきたこの例を覚えていますか？

ghci> (0, 0) -: landLeft 1 -: landRight 4 -: landLeft (-1) -: ⇨
landRight (-2)

(0,2)

あのときは、ピエールと鳥たちの相互作用をうまく表現できませんでした。式
の途中でピエールはバランスを崩すべきであるにもかかわらず、結果はそれを反
映していません。通常の関数適用の代わりにモナド適用（ >>=）を使うことで、
これを修正しましょう。

ghci> return (0, 0) >>= landLeft 1 >>= landRight 4 >>= ⇨
landLeft (-1) >>= landRight (-2)

Nothing

oyaji (20170810-501DAE64)

13.4 綱渡り 293

最終結果はちゃんと「失敗」になっています。なぜこの結果が得られたのか見
ていきましょう。

1. まず、 returnが (0, 0)をデフォルトの文脈に入れることで Just (0,

0)ができます。
2. Just (0, 0) >>= landLeft 1が評価されます。 Just (0, 0)は Just

値なので、 landLeft 1が (0, 0)に適用され、 Just (1, 0)を返しま
す。この鳥の数なら、ピエールは余裕でバランスがとれます。

3. Just (1, 0) >>= landRight 4が評価されて、 Just (1, 4)を返しま
す。ピエールはまだ何とかバランスを保っています。

4. Just (1, 4)は landLeft (-1)に食われます。これは landLeft (-1)

 (1, 4) が評価されるということです。もはやバランスは崩壊し、
landLeftは Nothingを返します。

5. さて、この Nothingは landRight (-2)に食われますが、入力が Nothing

なので、結果も自動的に Nothingになります。なにしろ landRight (-2)

を適用する相手がいないからです。

Maybeをアプリカティブ値として扱うだけでは、ここまでのことは不可能だっ
たでしょう。無理にやろうとしても、アプリカティブファンクターには、アプリ
カティブ値どうしをこのように深く相互作用させることはできないので、行き詰
まります。アプリカティブにできることは、せいぜい通常の関数にアプリカティ
ブ・スタイルで引数を渡すことくらいなのです。
アプリカティブ演算子たちは、アプリカティブ値からそれぞれの文脈に従って
結果を取り出しては通常の関数を適用し、結果をまたアプリカティブ値に入れて
返してくれます。しかし、アプリカティブ値どうしを相互作用させることは苦手
なのです。ところが、今回のピエールと鳥の例では、各ステップは以前のステッ
プの結果に依存しています。鳥たちがやってくるたびに、直前のステップを踏ま
えて今回の結果が検証され、バランスがとれているかどうか調べます。こうして
鳥がうまくとまれたかどうかが判定されるのです。

ロープの上のバナナ
さて、今度はバランス棒にとまっている鳥

の数によらず、いきなりピエールを滑らせて
落っことす関数を作ってみましょう。この関
数を bananaと呼ぶことにします。

banana :: Pole -> Maybe Pole
banana _ = Nothing

oyaji (20170810-501DAE64)

294 第 13章 モナドがいっぱい

この関数は鳥をとまらせる関数と混ぜて使えます。 bananaは引数に何を渡さ
れようと、無視して失敗を返すようにできているので、 bananaを呼べば必ずピ
エールを落っことせます。

ghci> return (0, 0) >>= landLeft 1 >>= banana >>= landRight 1
Nothing

上の例では、 bananaに渡るのは Just (1, 0)というかなり良いバランスの
値ですが、bananaはおかまいなしに Nothingを返すので、以降すべての結果は
Nothingになってしまいます。残念でした！
ところで、入力に関係なく既定のモナド値を返す関数だったら、自作せずとも

>>関数を使うという手があります。これが >>のデフォルトの実装です。

(>>) :: (Monad m) => m a -> m b -> m b
m >> n = m >>= _ -> n

普通の関数なら、引数を無視して既定の値を返すような関数の結果は、その既
定値そのものです。ところが、モナド値を扱う場合は、モナドとしての文脈と意
味を考慮する必要があります。 Maybe版の >>の動作は、こんな感じです。

ghci> Nothing >> Just 3
Nothing
ghci> Just 3 >> Just 4
Just 4
ghci> Just 3 >> Nothing
Nothing

どうですか？ 1番目の例では、 Maybeモナドの文脈が考慮された結果、「規定
値」であるはずの Just 3が失敗に置き換わっています。 >>を >>= _ ->で置
き換えてみれば、何が起こっているのか簡単に理解できますよ。

>>=で連結した処理中での banana関数は、 >>と Nothing という、失敗す
ることが保証された組み合わせで置き換えられます。

ghci> return (0, 0) >>= landLeft 1 >> Nothing >>= landRight 1
Nothing

ところで、 Maybeを失敗の文脈付きの値として扱って関数に食わせるという
賢明な選択をしなかったら、どうなっていたでしょう？ バランス棒に鳥をとま
らせる一連の処理は、このようになったはずです。

oyaji (20170810-501DAE64)

13.4 綱渡り 295

routine :: Maybe Pole
routine = case landLeft 1 (0, 0) of

Nothing -> Nothing
Just pole1 -> case landRight 4 pole1 of

Nothing -> Nothing
Just pole2 -> case landLeft 2 pole2 of

Nothing -> Nothing
Just pole3 -> landLeft 1 pole3

まずバランス棒の左側に鳥を 1羽とめ、成功したか失敗したかによって場合分
けをします。失敗していた場合には、 Nothingを返します。
成功していた場合は、右側に鳥をとめる処理に進み、また場合分けをして……、

という繰り返しです。この巨大で醜いコードを、 >>= による素敵なモナド適用
の連鎖で書き直すのは、 Maybeモナド布教コードの定番です。 Maybeモナドを
使うと、失敗するかもしれない処理が連続するコードをとても簡潔に書けるの
です。

Maybeモナドの >>=の実装は、まさにこの「値が Nothingかどうかを判定し、
その知識に基づいて動作を変える」というロジックになっています。もし入力値
が Nothingなら、 >>=は直ちに Nothingを返します。入力が Nothingでなけ
れば、 Justの中身を利用して計算を進めます。
この節では、関数の返り値を失敗処理

をサポートする値に変えることで、関数
がもっと便利になる例を見ました。関数
の返り値を Maybe 値にし、関数適用を
>>= に変えるだけで、ほとんど手間をか
けずに失敗を処理するメカニズムを組
み込むことができました。これも、 >>=

が、関数を値に適用するにあたって、値
が持っている文脈を保存するようにでき
ているおかげです。 Maybeの場合、文脈
は「この値は計算に失敗しているかもし
れない」というものでした。ですので、
Maybe値に関数を適用すると、常に失敗
の可能性が考慮されたコードが自動的に
出来上がるのです。

oyaji (20170810-501DAE64)

296 第 13章 モナドがいっぱい

13.5 do記法
Haskell にとってモナドはとても便利なので、モナド専用構文まで用意され

ています。その名は do 記法。 do 記法は、すでに第 8 章で、複数の I/O アク
ションを 1つに糊付けするときに使いましたね。実は、 do記法は IOモナドだ
けじゃなくあらゆるモナドに使えます。といっても基本は同じで、 do記法は複
数のモナド値を糊付けするものです。
モナドを使ったお馴染みのこんなコードを見てください。

ghci> Just 3 >>= (\x -> Just (show x ++ "!"))
Just "3!"

もう見飽きたって？ 確かに、モナド値を関数に渡して、モナド値が返ってと
いう、何の変哲もないコードです。さて、このコードを実行すると、ラムダ式の
中の xに 3が入りますよね。このラムダ式の中では、 3はモナド値でなく通常
の値として扱えるわけです。では、このラムダ式の中にもう 1つ >>= があった
ら、どうなるでしょう？ やってみましょう。

ghci> Just 3 >>= (\x -> Just "!" >>= (\y -> Just (show x ++ y)))
Just "3!"

おー、 >>=の入れ子構造だ！ 外側のラムダ式の中では、 Just "!"をラムダ
式 \y -> Just (show x ++ y)に食わせています。このラムダ式の中では、 y

は "!"になります。また、 xは、外側のラムダ式が実行されたときに 3が入っ
たままです。これを見ていると let構文を思い出しますね。

ghci> let x = 3; y = "!" in show x ++ y
"3!"

この 2つの例は似ていますが、 >>=のほうで使っている値はモナド値である
という大きな違いがあります。失敗の文脈付きの値なのです。ですから、好きな
箇所を失敗で置き換えられます。

ghci> Nothing >>= (\x -> Just "!" >>= (\y -> Just (show x ++ y)))
Nothing
ghci> Just 3 >>= (\x -> Nothing >>= (\y -> Just (show x ++ y)))
Nothing
ghci> Just 3 >>= (\x -> Just "!" >>= (\y -> Nothing))
Nothing

最初の例では Nothingを関数に渡しているので、当然 Nothingが返っていま
す。次の例では、 Just 3を関数に渡して、 xが 3になっています。ところが内
側のラムダ式には Nothingを渡していますから、そいつは Nothingを返し、そ
のせいで外側のラムダ式の結果も Nothingになっています。やっぱりこの操作

oyaji (20170810-501DAE64)

13.5 do記法 297

は let 式で値を変数に束縛する操作に似ていますね。ただ、操作したい値がモ
ナド値である、という違いはあります。
この類似をもっと明確にするために、今の式をスクリプト風に書き直しましょ
う。 Maybe値ごとに 1行を使います。

foo :: Maybe String
foo = Just 3 >>= (\x ->

Just "!" >>= (\y ->
Just (show x ++ y)))

面倒なラムダ式をいっぱい書かなくて済むように、Haskellには do記法が備
わっています。 do記法を使えば、さっきのコードはこう書けます。

foo :: Maybe String
foo = do

x <- Just 3
y <- Just "!"
Just (show x ++ y)

いちいち Maybe 値が Just か Nothing かなんて場合分
けせずとも、Maybe値から生の値が取り出せる気分になれ
ます。素晴らしい！ もし、中身を取り出そうとする値の
いずれかが Nothing だったら、 do 式全体も Nothing に
なります。この do式の中では、 Maybeモナドから（存在
するとおぼしき）値を取り出しつつ、値に付きまとう文脈
の処理は >>=に任せているのです。
モナド値を連鎖させた式と等価なものを、ずっと簡潔に
表せる記法が do式なのです。

do自由自在
do式は、 let行を除いてすべてモナド値で構成されます。モナドの結果を調

べるには <-を使います。例えば、変数を <-で Maybe Stringの結果に束縛す
れば、その変数の型は Stringになります。これは >>=を使ってモナド値をラム
ダ式に食わせたときとまったく同じです。

do式の最後のモナド値（上の例でいうと Just (show x ++ y)）だけは <-

で結果を束縛できません。 do記法は >>=とラムダ式を使う表記に書き直せるは
ずですが、最後のモナドで <-を使っても、それを受けるべきラムダ式がないか
らです。その代わり、最後のモナドの返り値は、それまでの失敗の可能性をすべ
て踏まえた上で、 do式で糊付けしたモナド全体の結果になります。例えばこの
コードを見てください。

oyaji (20170810-501DAE64)

298 第 13章 モナドがいっぱい

ghci> Just 9 >>= (\x -> Just (x > 8))
Just True

>>=の左辺は Justなので、ラムダ式は 9に適用され、結果は Just Trueに
なっています。これを do記法で書き直すと、こうなります。

marySue :: Maybe Bool
marySue = do

x <- Just 9
Just (x > 8)

2つを見比べると、do記法で連鎖させた最後のモナドの結果が do式全体の結
果になる仕組みがよく分かると思います。

帰ってきたピエール
ピエールの綱渡りの動作も、もちろん do 記法で書けます。 landLeft と

landRightは鳥の数とバランス棒を引数に取り、新しい棒の状態を Justに包ん
で返します。ただしピエールが滑った場合は Nothingを返します。各ステップ
は、それまでの結果に依存しているので、 >>=を使って連結し、各ステップから
の失敗の文脈が累積するようにします。例えば、左に 2羽、右に 2羽、それから
左に 1羽の鳥が来る処理はこう書けます。

routine :: Maybe Pole
routine = do

start <- return (0, 0)
first <- landLeft 2 start
second <- landRight 2 first
landLeft 1 second

さて、ピエールは無事でしょうか？

ghci> routine
Just (3,2)

無事でした！
ピエールの動作を >>=を明示的に使って書いていたときには、 return (0,

0) >>= landLeft 2 >>= landRight 2などと書くのが常でした。 landLeft

2は Maybe値を返す関数だからです。ところが、 do式を使う場合は各行がモナ
ド値である必要があるので、直前の Poleの状態に名前をつけて landLeft関数
や landRight関数に明示的に渡さないといけません。 Maybe値を束縛した変数
の中身を調べてみれば、startには (0, 0)、firstには (2, 0)が入っている
はずです。

1行ごとに処理が書いてある do式が、手続き型言語のプログラムに見える人
もいるかもしれません。でも do式では、それ以前の行の結果に依存する値の列

oyaji (20170810-501DAE64)

13.5 do記法 299

が、成功または失敗の文脈とともに書いてあるにすぎません。
Maybeのモナドとしての側面を利用しなかったら、このコード片がどんなふ

うになっていたか、もう一度見てみましょう。

routine :: Maybe Pole
routine =

case Just (0, 0) of
Nothing -> Nothing
Just start -> case landLeft 2 start of

Nothing -> Nothing
Just first -> case landRight 2 first of

Nothing -> Nothing
Just second -> landLeft 1 second

成功した場合は Just (0, 0) の中のタプルが start になり、 landLeft 2

startの結果が firstになり……、という流れが分かりますか？
ピエールにバナナの皮を踏ませたい場合、 do記法ではこう書きます。

routine :: Maybe Pole
routine = do

start <- return (0, 0)
first <- landLeft 2 start
Nothing
second <- landRight 2 first
landLeft 1 second

do記法の中で、 <-による変数への束縛をせずにモナドを使うと、結果を無
視したいモナドの後に >>を付けたのと同じことになります。モナドをつなげる
けれども結果には興味がないから無視するわけです。同じ処理は _ <- Nothing

とも書けますが、 <-を省略した記法のほうがきれいでしょう？
いつ doを使い、いつ >>=を使うかの選択はあなた次第です。僕はピエールの
例では >>= を使うほうがいいと思います。各モナドが、もっぱら直前のモナド
の結果に依存しているからです。 do記法では、どの時点のバランス棒に鳥をと
まらせるのかを明示的に書かないといけません。常に 1 つ前のステップの結果
を使うのであれば、 doを使うまでもないですよね。とはいえ、この例で do記
法に対する理解が多少深まったと思います。

パターンマッチと失敗
do記法でモナド値を変数名に束縛するときには、 let式や関数の引数のとき

と同様、パターンマッチが使えます。これが do式におけるパターンマッチの例
です。

oyaji (20170810-501DAE64)

300 第 13章 モナドがいっぱい

justH :: Maybe Char
justH = do

(x:xs) <- Just "hello"
return x

ここでは、パターンマッチを使って文字列 "hello"の先頭の文字を取り出し、
それをモナド全体の結果としています。ですから justH は Just 'h' と評価さ
れます。
もし、このパターンマッチが失敗したらどうなるのでしょう？ 関数定義では、

あるパターンマッチが失敗したら、次のパターンを試すことになっていました。
ある関数のすべてのパターンマッチに失敗したら、エラーが投げられ、プログ
ラムは異常終了します。これに対し、 let式でパターンマッチに失敗した場合、
let式には複数のパターンマッチを次々に試す仕組みはないので、直ちにエラー
になります。

do 式の中でパターンマッチが失敗した場合、 Monad 型クラスの一員である
fail関数が使われるので、異常終了という形ではなく、そのモナドの文脈に合っ
た形で失敗を処理できます。 failのデフォルト実装はこうです。

fail :: (Monad m) => String -> m a
fail msg = error msg

あ、デフォルトでは、 fail はプログラムを異常終了させるようですね。し
かし、 Maybeのような失敗を表現できる文脈を持つモナドでは、通常は独自に
failを実装しています。 Maybeの failの実装はこんな感じです。

fail _ = Nothing

エラーメッセージを無視して Nothingを作っています。これにより、 do記法
で書かれた Maybeモナドの内部でパターンマッチに失敗したときは、 do式全体
が Nothingを返します。プログラムが異常終了するよりも、 Nothingが得られ
たほうがうれしいですよね。パターンマッチに失敗するような do式を書いてみ
ましょう。

wopwop :: Maybe Char
wopwop = do

(x:xs) <- Just ""
return x

このパターンマッチは失敗するので、その効果は失敗するパターンマッチのあ
る行全体を Nothingで置き換えたのと同じです。試してみましょう。

ghci> wopwop
Nothing

oyaji (20170810-501DAE64)

13.6 リストモナド 301

このように、パターンマッチが失敗しても全プログラムが巻き添えになって落
ちることはなく、モナドの文脈で失敗が発生するだけで済んでいます。実に素晴
らしい。

13.6 リストモナド
これまでのところ、 Maybe は失敗の

文脈の付いた値として解釈できること、
>>=を使って Maybe値を関数に食わせる
ことで失敗処理を簡単に記述できること
を見てきました。この節では、リストの
モナドとしての側面を使うことで、非決
定性を伴うコードをきれいに読みやすく
書く方法を見ていきます。
第 11 章では、アプリカティブとして

のリストは非決定性計算を表すといいま
した。
例えば、 5という値は決定的です。つ

まり、どう評価してもただ 1つの決まった計算結果にしかならず、その値は既知
です。一方、 [8,9,3]のような値は複数の計算結果を含んでいるとも、複数の
候補値を同時に重ね合わせたような 1 つの値であるとも解釈できます。リスト
をアプリカティブ・スタイルで使うと、非決定性を表現していることがはっきり
します。

ghci> (*) <$> [1,2,3] <*> [10,100,1000]
[10,100,1000,20,200,2000,30,300,3000]

左辺リストの要素と右辺リストの要素の、すべてのあり得る組み合わせの積
が、答のリストに含まれています。非決定性計算ではたくさんの選択肢に出くわ
しますが、その都度すべてを試します。すると、最終結果はもっとたくさんの候
補値を含んだ非決定的値になるわけです。
この非決定性計算という文脈は、うまくモナドに焼き直すことができます。リ
ストの Monadインスタンスは、こう書けます。

instance Monad [] where
return x = [x]
xs >>= f = concat (map f xs)
fail _ = []

oyaji (20170810-501DAE64)

302 第 13章 モナドがいっぱい

ご存知のとおり、 returnは pureと同じなので、リストの returnが何なの
かも分かりますね。 returnは値を取って、その値を再現できるような最小限の
文脈に入れます。というわけで、 returnは引数の値が 1つだけ入っているよう
なリストを作って返すわけです。 returnは、普通の値をリストにくるんで非決
定な値に混ぜたいときに便利です。

>>= は「文脈付きの値（モナディックな値）」を、「通常の値を取って文脈付
きの値を返す関数」に食わせる演算でしたね。もし関数が文脈付きの値でなく通
常の値を返すものだったとしたら、 >>=はここまで便利じゃなかったでしょう。
一度使うと、文脈はなくなってしまいますから。
それでは、非決定的値を関数に食わせてみましょう。

ghci> [3,4,5] >>= \x -> [x,-x]
[3,-3,4,-4,5,-5]

Maybeに >>=を使うと、失敗の可能性を考慮しながら、モナド値を関数に供
給できました。今度はモナドが非決定性計算を処理してくれています。

[3,4,5]は非決定的値であり、それを食わせている関数も非決定的値を返す
ようになっています。最終結果も非決定的であり、リスト [3,4,5]から 1つの
要素を選んで \x -> [x,-x] に食わせるすべての場合を尽くしています。関数
のほうも、数を取って 2通りの答を返します。1つはそのまま、1つは符号を変
えて。 >>=を使ってさっきのリストをこの関数に食わせると、すべての数が両方
の符号になって出てきます。ラムダ式の xは、リストの中の値を順に取ります。
この答がどうして得られるのか、実装を追いかけてみましょう。はじめに、

[3,4,5] があります。それをラムダ式で写すとこうなりますね。

[[3,-3],[4,-4],[5,-5]]

ラムダ式がそれぞれの要素に作用した結果、二重リストができています。そし
てこのリストは concatされて、じゃじゃーん！ 非決定性関数が非決定的値に
適用できました！
非決定性計算は、失敗する可能性のある計算の上位互換になっています。空リ
スト []は、返すべき値が何もない、ということなので、 Nothingとよく似てい
ます。だから、失敗は空リストで表せばよいのです。 Maybeと同様、 failのエ
ラーメッセージは無視されます。では、失敗するリストで遊んでみましょう。

ghci> [] >>= \x -> ["bad","mad","rad"]
[]
ghci> [1,2,3] >>= \x -> []
[]

1 行目の例では、ラムダ式に空リストを食わせています。くうかい？ リスト
には要素がないので、次段の関数に渡すものがありません。ですから、結果は空

oyaji (20170810-501DAE64)

13.6 リストモナド 303

リストになります。これは Nothing を関数に渡したときと同じですね。2 行目
の例は、3つの要素が関数に渡されますが、関数のほうが引数を無視して空集合
を返しています。とにかく関数のほうが何を与えても失敗してばかりなので、全
体の結果も失敗となっています。

Maybeのときと同様、 >>=を使えばリストをいくつでも連結して非決定性を
伝播させることができます。

ghci> [1,2] >>= \n -> ['a','b'] >>= \ch -> return (n, ch)
[(1,'a'),(1,'b'),(2,'a'),(2,'b')]

[1,2] から出てきた数が n に
束縛され、 ['a','b'] から出て
きた文字が ch に束縛されます。
それから return (n, ch)をする
と（ここは [(n, ch)]と書いても
よい）、ペア (n, ch) がデフォル
トの文脈に入ります。この場合
returnのルールは、「 (n, ch)の
情報を含んでいる、できる限り短
いリストを返しなさい、非決定性
をなるべく小さくしなさい」です。
そうすれば、文脈の変化も最小限
になります。このプログラムは、「 [1,2]の各要素 n、 ['a','b']の各要素 ch

に対して、タプルを作りなさい」という意味になっています。
一般的に言って、 returnは値を最小限の文脈に包むので、文脈に余計な影響

（ Maybeだったら失敗したり、リストだったら場合の数が増えたり）を及ぼさず、
ただ何らかの結果を提示するだけです。
非決定性計算を組み立てたものは、場合分けの木構造とみなすことができま
す。リストが表現する可能な選択肢のそれぞれが木構造の枝分かれに対応して
います。これが、さっきの例を do記法で書き直したものです。

listOfTuples :: [(Int, Char)]
listOfTuples = do

n <- [1,2]
ch <- ['a','b']
return (n, ch)

こう書くと、 nは [1,2]から、 chは ['a','b']から 1つ選んだものだとい
うのがはっきりしますね。 Maybeのときと同じで、モナド値から要素を取り出

oyaji (20170810-501DAE64)

304 第 13章 モナドがいっぱい

して普通の値であるかのように扱えています。そして、裏では >>= が文脈の面
倒を見てくれています。この場合の文脈は非決定性です。

do記法とリスト内包表記
リストの do記法を見てピンときたあなた。これを見てください。

ghci> [(n, ch) | n <- [1,2], ch <- ['a','b']]
[(1,'a'),(1,'b'),(2,'a'),(2,'b')]

そう、リスト内包表記です！ do記法では、 nは [1,2]の中の値を順に取り、
その各々に対して chは ['a','b']のどれかになり、そして最後の行は (n, ch)

をデフォルト文脈（単一要素リスト、非決定性が増えない）に入れます。リスト
内包表記でも同じことが起こっていますが、最後の (n, ch) を return で包む
操作は、リスト内包表記の出力パートがやってくれるので省かれています。
実は、リスト内包表記はリストモナドの構文糖衣にすぎないのです。リスト内
包表記も do記法も、内部では >>=を使った非決定性計算に変換されています。

MonadPlusと guard関数
さて、リスト内包表記では、出力する要素を選別（ filter）することができ

ました。例えば 7の付く数だけを選んで出すには、

ghci> [x | x <- [1..50], '7' ‘elem‘ show x]
[7,17,27,37,47]

というふうに数 xを showで文字に変え、それから文字 '7'が含まれているか調
べます。
この選別はどんなリストモナドに翻訳されるのでしょう？ それを知るには、

guard関数と MonadPlus型クラスを学ぶ必要があります。
MonadPlusは、モノイドの性質をあわせ持つモナドを表す型クラスです。こ

れがその定義です。

class Monad m => MonadPlus m where
mzero :: m a
mplus :: m a -> m a -> m a

mzero は、 Monoid 型クラスでいう mempty に対応する概念で、 mplus は
mappend に対応しています。リストはモノイドでもありますから、 MonadPlus

のインスタンスにできます。

instance MonadPlus [] where
mzero = []
mplus = (++)

oyaji (20170810-501DAE64)

13.6 リストモナド 305

リストに関する mzeroは、候補が 1つもない、失敗した非決定性計算を表し
ています。 mplusは 2つの非決定的値を 1つの値にくっつけます。 guard関数
の定義はこんな感じです。

guard :: (MonadPlus m) => Bool -> m ()
guard True = return ()
guard False = mzero

guardは真理値を引数に取ります。引数が Trueなら、 guardは ()を成功を
表す最小限の文脈に入れます。引数が Falseなら、 guardは失敗したモナド値
を作ります。このような動作をします。

ghci> guard (5 > 2) :: Maybe ()
Just ()
ghci> guard (1 > 2) :: Maybe ()
Nothing
ghci> guard (5 > 2) :: [()]
[()]
ghci> guard (1 > 2) :: [()]
[]

面白そうですね。でもどこが便利なのでしょう？ リストモナドでは、 guard

を使って解の候補をふるい落とすことができます。

ghci> [1..50] >>= (\x -> guard ('7' ‘elem‘ show x) >> return x)
[7,17,27,37,47]

この計算結果は、前にリスト内包表記でやったのと同じです！どうして guard

を使ってできたのでしょう？ まずは guard関数を >>につなぐと何が起こるか
見てみましょう。

ghci> guard (5 > 2) >> return "cool" :: [String]
["cool"]
ghci> guard (1 > 2) >> return "cool" :: [String]
[]

guard が成功すれば、空タプルの入ったモナドが返ってきます。そこですか
さず >> を使えば、その空タプルを無視し、何か別のものを返すことができま
す。ところが、その guard が失敗したら、後ろの return もつられて失敗しま
す。空リストを >>= に食わせたら、答は必ず空リストになるからです。 guard

は、ぶっちゃけ「引数が Falseなら直ちに失敗を投げよ。 Trueならダミーの値
() が入っている成功を作れ」と言っているのです。 guard がやっているのは、
計算を続けてよいかの判断です。
さっきの例を do記法で書き直したものがこれです。

oyaji (20170810-501DAE64)

306 第 13章 モナドがいっぱい

sevensOnly :: [Int]
sevensOnly = do

x <- [1..50]
guard ('7' ‘elem‘ show x)
return x

ここでもし、最後に returnを使って xを返すのを忘れたとすると、計算結果
はただの空タプルのリストになってしまいます。最後に、リスト内包表記を使っ
たコードをもう一度挙げておきます。

ghci> [x | x <- [1..50], '7' ‘elem‘ show x]
[7,17,27,37,47]

というわけで、リスト内包表記でフィルタを使うのは guardと同値なのです。

騎士の旅
ここで、非決定性計算を使って解くのにうってつけの問題をご紹介しましょ

う。チェス盤の上にナイトの駒が 1 つだけ乗っています。ナイトを 3 回動かし
て特定のマスまで移動させられるか、というのが問題です。チェス盤上でのナイ
トの位置は、単なる数のペアで表現することにしましょう。1つ目の数が横軸、
2つ目が縦軸です。
ナイトの現在位置を表す型シノニムを作りましょう。

type KnightPos = (Int, Int)

oyaji (20170810-501DAE64)

13.6 リストモナド 307

さて、ナイトが (6, 2)から出発したとします。果たしてナイトは、ちょうど
3手で (6, 1)に移動できるでしょうか？ (6, 1)に行くための最善手は？ そ
れが分かったら、条件を満たす手順をすべて求めてみましょう！ せっかく非決
定性計算を自由に使えるようになったんだから、解の候補の中から 1つだけ選ぶ
のではなく、全部採用してみましょうよ。これが、ナイトの現在位置を取って次
に行ける位置を列挙する関数です。

moveKnight :: KnightPos -> [KnightPos]
moveKnight (c,r) = do

(c', r') <- [(c+2,r-1),(c+2,r+1),(c-2,r-1),(c-2,r+1)
,(c+1,r-2),(c+1,r+2),(c-1,r-2),(c-1,r+2)
]

guard (c' ‘elem‘ [1..8] && r' ‘elem‘ [1..8])
return (c', r')

ナイトは水平に 1マス動いたあと垂直に 2マス、あるいは垂直に 1マス動い
たあと水平に 2マス、という動きが 1手でできます。ペア (c', r')は、動きの
リストにある値を順番に取り、guardは、(c', r')が盤面の範囲内であること
を保証しています。盤面からはみ出していたら、 guardは空リストを生み出す
ので、 (c', r')という位置は以降の計算では使われません。
この関数はリストモナドを使わずに書くこともできます。例えば、 filterを

使うならこう書けます。

moveKnight :: KnightPos -> [KnightPos]
moveKnight (c, r) = filter onBoard

[(c+2,r-1),(c+2,r+1),(c-2,r-1),(c-2,r+1)
,(c+1,r-2),(c+1,r+2),(c-1,r-2),(c-1,r+2)
]
where onBoard (c, r) = c ‘elem‘ [1..8] && r ‘elem‘ [1..8]

どちらの実装も同じことをするので、気に入ったほうを使ってください。で
は、動かしてみましょう。

ghci> moveKnight (6, 2)
[(8,1),(8,3),(4,1),(4,3),(7,4),(5,4)]
ghci> moveKnight (8, 1)
[(6,2),(7,3)]

ちゃんと動きました！ 魔法みたい！ ある位置を入力に取って、可能な動きの
すべてを同時に行っているようなものです。
さて、次の位置は非決定的値で得られましたから、 >>= を使えば、また

moveKnightにぶちこめますね。これが、初期位置を取って、3手でいける位置
をすべて返してくれる関数です。

oyaji (20170810-501DAE64)

308 第 13章 モナドがいっぱい

in3 :: KnightPos -> [KnightPos]
in3 start = do

first <- moveKnight start
second <- moveKnight first
moveKnight second

この関数に (6, 2)を渡して返ってくるリストはかなり大きいものです。なぜ
なら、同じ位置に 3手で行く経路が複数ある場合、その位置が複数回リストに登
場するからです。
先ほどのコードを do記法を使わずに書くと、こうなります。

in3 start = return start >>= moveKnight >>= moveKnight >>= moveKnight

最初の >>=は、startから可能な手をすべて列挙してくれます。次の >>=は、
1手目に可能な動きのそれぞれに対して、次に可能な手を列挙。最後の >>=も同
様です。

returnを使って値をデフォルトの文脈に入れた上で、 >>=を使ってそれを関
数に食わせるという一連の記述は、単に関数を値に適用するのと等価なのです
が、ここではスタイルを統一するために returnと >>=を使ってみました。
では、2つの位置を取って、1つ目の位置から 2つ目の位置にちょうど 3手で
到達できるか教えてくれる関数を作りましょう。

canReachIn3 :: KnightPos -> KnightPos -> Bool
canReachIn3 start end = end ‘elem‘ in3 start

まず、3手で行ける位置をすべて生成してから、目的地がその中に含まれてい
るか調べています。例えば、 (6, 2)から (6, 1)へ 3手で行けるかどうか試す
には、こうです。

ghci> (6, 2) ‘canReachIn3‘ (6, 1)
True

行けました！ では、 (6, 2)から (7, 3)では？

ghci> (6, 2) ‘canReachIn3‘ (7, 3)
False

ダメでした！ 読者への演習問題として、始点と終点を与えるとどういう経路
を取ればいいか教えてくれるよう、この関数を改造してみてください。なお、
第 14章では、この関数に手数をハードコードするんじゃなくて、手数の条件も
引数で渡せるように改造する方法を紹介します。

oyaji (20170810-501DAE64)

13.7 モナド則 309

13.7 モナド則
ファンクターやアプリカティブファン

クターと同じく、モナドにも、すべての
モナドインスタンスが守るべき法則がい
くつかあります。ある型が Monadのイン
スタンスになっているからといって、実
際にモナドであるわけではありません。
ある型が真にモナドであるためには、そ
の型はモナド則を満たさねばなりません。モナド則があることで、モナドになっ
ている型や、型の振る舞いについて合理的な想定ができるようになります。

Haskellでは、型検査が通る限り、任意の型を任意の型クラスのインスタンス
にできてしまいます。ある型がモナド則を満たしているかなどの検査はしてく
れないので、 Monad型クラスのインスタンスを自作する場合には、その型がモ
ナド則を満たしていることを自分で保証しないといけません。標準ライブラリ
に含まれる型はモナド則を満たしていると信頼できますが、自分でモナドを作る
ときには、モナド則が成り立っているか手動で確認しないといけません。もっと
も、モナド則はそんなに難しくないので、ご心配なく。

左恒等性
第一のモナド則が言っているのは、 return を使って値をデフォルトの文
脈に入れたものを >>= を使って関数に食わせた結果は、単にその値にその関
数を適用した結果と等しくなりなさい、ということです。形式的に言えば、
return x >>= fと f xは等価である、ということです。
モナド値を文脈付きの値とみなし、 returnは値をその値が再現できるような
最小限のデフォルトの文脈に入れるものだとみなす立場からすれば、このモナド
則は実に自然な発想です。 returnが作る文脈が本当に最小限のものだというの
なら、 returnで作ったモナド値を関数に食わせるという操作は、単に関数を普
通の値に適用する操作とほんの少ししか食い違わないでしょう。そして実際、食
い違いはゼロなのです。

Maybe モナドに関しては、 return は Just に等しいと定義されています。
Maybeモナドとは、そもそも失敗する可能性のある計算を表現するモナドでした
から、そのような文脈に値を入れたいというのなら、その値を計算の成功として
扱うのは自然なことです。返すべき値が分かっているわけですからね。これは
Maybeモナドの returnを使っている例です。

oyaji (20170810-501DAE64)

310 第 13章 モナドがいっぱい

ghci> return 3 >>= (\x -> Just (x+100000))
Just 100003
ghci> (\x -> Just (x+100000)) 3
Just 100003

リストモナドの場合、 returnは引数を単一要素リストに入れる関数です。そ
して >>= の実装は、リストの中のすべての要素に対して関数を適用するという
ものでした。ところが、単一要素リストには要素が 1つしかありませんから、関
数を値に直接適用したのと同じ結果になるわけです。

ghci> return "WoM" >>= (\x -> [x,x,x])
["WoM","WoM","WoM"]
ghci> (\x -> [x,x,x]) "WoM"
["WoM","WoM","WoM"]

そして IOモナドの場合には、 returnを使うと、副作用がなく単に値を返す
だけの I/Oアクションを作れるのでしたね。というわけでこのモナド則は IOに
関しても成り立つわけです。

右恒等性
モナドの第二法則は、 >>=を使ってモナド値を returnに食わせた結果は、元
のモナド値と不変であると言っています。式で書くと、 m >>= return はただ
の mである、ということです。
この法則は、第一法則ほど自明ではないかもしれません。なぜこれが成り立つ
べきなのか見ていきましょう。 >>= を使ってモナド値を関数に食わせるという
式があった場合、関数のほうは普通の値を取ってモナド値を返す関数のはずで
す。 returnも、型を見れば、そういう関数の一種であることが分かります。

returnは、値をその値を返せるような最小限の文脈に入れるものです。これ
は、例えば Maybe モナドであれば決して失敗しないことを意味し、リストモナ
ドであれば非決定性を増やさないことを意味します。
何種類かのモナドで試してみましょう。

ghci> Just "move on up" >>= return
Just "move on up"
ghci> [1,2,3,4] >>= return
[1,2,3,4]
ghci> putStrLn "Wah!" >>= return
Wah!

リストの場合、 >>=の実装はこうなっていました。

xs >>= f = concat (map f xs)

oyaji (20170810-501DAE64)

13.7 モナド則 311

ということは、[1,2,3,4]を returnに注ぎ込むと、まず returnが [1,2,3,4]

を写して [[1],[2],[3],[4]]ができます。それからこのリストが concatされ
て、元のリストに戻ります。
左恒等性と右恒等性は、いずれも基本的に returnの振る舞いに関する法則で

す。 returnはモナドシステムの中で、通常の値をモナド値に変えるという重要
な役割を担っており、 returnが作り出すモナド値が最小限でない余計な文脈を
持っていたら困ってしまいます。

結合法則
最後のモナド則は、 >>= を使ったモナド関数適用の連鎖があるときに、ど

の順序で評価しても結果は同じであるべき、というものです。式で書くと、
(m >>= f) >>= g と m >>= (\x -> f x >>= g) が等価である、というもの
です。
むむむ、何を言っているのか分かりませんね。えーっと、 mはモナド値で、 f

と gはモナド関数です。 (m >>= f) >>= gと書くと、 mを fに食わせることに
なります。その結果はモナド値です。で、そのモナド値を g に食わせます。一
方、 m >>= (\x -> f x >>= g)と書いたときは、 xを取るラムダ式があって、
それはモナド値 f xを gに食わせたものを返します。どうしてこの 2つの式が
等価なのかは分かりにくいですから、例を見て理解しましょう。
さて、鳥たちと友達で、綱渡りが趣味のピエールのことを覚えていますか？
ピエールのバランス棒に鳥がとまりに来るようすをシミュレートするために、失
敗するかもしれない関数の連鎖を作ったのでした。

ghci> return (0, 0) >>= landRight 2 >>= landLeft 2 >>= landRight 2
Just (2,4)

この例では、まず Just (0, 0)があって、それにモナド関数 landRight 2を
適用しています。その結果はまた別のモナドであり、それがまた次のモナド関数
に束縛され、と続いています。この式にあえて括弧を付ければ、このようになり
ます。

ghci> ((return (0, 0) >>= landRight 2) >>= landLeft 2) >>= landRight 2
Just (2,4)

しかし、このルーチンはこう書くこともできるのです。

return (0, 0) >>= (\x ->
landRight 2 x >>= (\y ->
landLeft 2 y >>= (\z ->
landRight 2 z)))

oyaji (20170810-501DAE64)

312 第 13章 モナドがいっぱい

return (0, 0) は Just (0, 0) と等価であり、これをラムダ式に食わせる
と xが (0, 0)になります。 landRightは鳥の数とバランス棒の状態（数のタ
プル）を取る関数ですが、それらを無事受け取って Just (0, 2) を返します。
それを次のラムダ式に渡すと、 yが (0, 2)になります。このような計算が、最
後の鳥が処理されて Just (2, 4)が生み出されるまで続きます。これが全体の
計算結果になるわけです。
このようにモナド値をモナド関数に食わせる式を評価するとき、入れ子の順序

はどうでもよく、ただ関数の意味だけが重要である、というのがモナド結合法則
の言うところです。この法則を別の側面から見てみましょう。今、 f と g とい
う名の 2つの関数があるとします。

(.) :: (b -> c) -> (a -> b) -> (a -> c)
f . g = (\x -> f (g x))

gの型が a -> bで、 fの型が b -> cならば、2つの関数を結合し、 gの返
り値を fの引数に渡すことで、 a -> c型の新しい関数を作れます。では、この
2 つがモナド関数であったらどうでしょう？ 2 つの関数の返り値がモナド値で
あったら？ a -> m b型の関数の返り値は、そのままでは b -> m c型の関数
に渡せませんね。後者は b型の通常の値を期待しており、モナド値は受け取れな
いからです。ところが、 >>=を使うとこれが可能になります。

(<=<) :: (Monad m) => (b -> m c) -> (a -> m b) -> (a -> m c)
f <=< g = (\x -> g x >>= f)

こうして、モナド関数を合成することが可能になりました！

ghci> let f x = [x,-x]
ghci> let g x = [x*3,x*2]
ghci> let h = f <=< g
ghci> h 3
[9,-9,6,-6]

これは素晴らしい。でも、これと結合法則にどんな関係が？ えーと、モナド
結合法則をこの関数合成の法則として見た場合、 f <=< (g <=< h)と (f <=<

g) <=< hが等価である、という宣言になっています。これもまた、モナドの演
算子を入れ子にする順番はどうでもいい、ということの別の表現になっているの
です。
ここで、 <=<を使って最初の 2つの法則を書き直してみると、左恒等性は任

意のモナド関数 fに対して f <=< returnは fと等価であるという宣言、右恒
等性は return <=< f もまた f と等価であるという宣言になっています。こう
してみると、3 つのモナド則は、 f が通常の関数であった場合に (f . g) . h

oyaji (20170810-501DAE64)

13.7 モナド則 313

と f . (g . h)が等価であり、 f . idは常に fと等しく、 id . fもただ
の fであることと非常に似ています。
この章では、モナドの基礎を見て、 Maybe モナドとリストモナドの仕組みを

学びました。次の章では、ほかにもたくさんあるすごいモナドを紹介していき、
独自のモナドも作ってみます。

oyaji (20170810-501DAE64)

oyaji (20170810-501DAE64)

第14章
もうちょっとだけモナド

これまで、モナドが値を文脈に入れること、文脈の中で関数適用が行えるこ
と、 >>=や do記法を使えばHaskellが文脈の面倒を見てくれるので、プログラ
マは値を扱うのに集中できることを見てきました。
最初に出会った Maybe モナドは失敗する可能性

という文脈を値に付加するものでした。次にリスト
モナドを学び、実に簡単に非決定性計算を導入でき
ることを見ました。そういえば IOモナドも使って
ましたね、しかも IOがモナドだったなんて知る前
から！
この章には、さらにいくつかのモナドを紹介しま
す。それらを使うことで、普通の値をモナド値とし
て扱えばプログラムがどんなにきれいに書けるか
を体感してください。モナドの世界を探検すること
で、モナドを認識し、使いこなすための感覚が磨か
れていくことでしょう。
この章に登場するモナドは、すべて mtl パッ
ケージの一部です（Haskell のパッケージはモジ
ュールの集まりです）。 mtlパッケージは Haskell
Platform に入っているので、たぶんもうあなたの
環境にもインストール済みだと思いますが、mtlが
インストールされているか調べるには、コマンドラインから ghc-pkg list と
打ってください。するとインストールされている Haskell パッケージの一覧が
出てきます。その中に mtlとバージョン番号が記された行があるはずです。

315

oyaji (20170810-501DAE64)

316 第 14章 もうちょっとだけモナド

14.1 Writer？ 中の人なんていません！
これまで、 Maybeモナド、リストモナド、そして IOモナドという武器をゲッ
トしてきました。次は Writerです。直ちに装備したまえ！

Maybeモナドが失敗の可能性という文脈付きの値を表し、リストモナドが非
決定性が付いた値を表しているのに対し、 Writer モナドは、もう 1 つの値が
くっついた値を表し、付加された値はログのように振る舞います。 Writerモナ
ドを使えば、一連の計算を行っている間、すべてのログが単一のログ値にまとめ
て記録されることを保証できます。最終的なログは、モナドの返り値にくっつい
て出てきます。
例えば、まあデバッグ目的とかで、何が起こっているのか説明する文字列を値
にくっつけたいとしましょう。盗賊団の人数を引数に取り、それが大きな盗賊
団であるかどうか判定する関数を考えてみてください。とてもシンプルな関数
です。

isBigGang :: Int -> Bool
isBigGang x = x > 9

さて、ただ Trueか Falseを返すだけでなく、この関数が何をしたかを示す文
字列も一緒に返してほしかったら、どうすればよいでしょう？ そうですね、返
したい文字列を作って、 Boolと一緒に返してやればよいです。

isBigGang :: Int -> (Bool, String)
isBigGang x = (x > 9, "Compared gang size to 9.")

これで、単に Boolを返すのではなく、第一要素が元来の返り値で、第二要素
がそれに添えた文字列であるタプルを返すようになりました。値に文脈が付い
たわけです。さあ、動かしてみましょう。

ghci> isBigGang 3
(False,"Compared gang size to 9.")
ghci> isBigGang 30
(True,"Compared gang size to 9.")

これで問題なさそうですよね。 isBigGangは、普通の値を取って、文脈の付い
た値を返します。ついさっき見たように、普通の値を渡すのには何の問題もあり
ません。では、すでに文字列が付いている値、例えば (3, "Smallish gang.")

を isBigGangに食わせたかったら、どうします？ 何か前にも聞いた話ですね。
普通の値を取って文脈の付いた値を返す関数があるとき、それに文脈の付いた値
を食わせるには、どうしたらいいのでしょう？

oyaji (20170810-501DAE64)

14.1 Writer？ 中の人なんていません！ 317

前の章で Maybe モナドを探検しているとき、
applyMaybe という関数を作ったのを覚えていますか。
この関数は Maybe a 型の値と a -> Maybe b 型の関数
を引数に取りました。関数のほうは Maybe a型でなく a

型しか引数に取れないにもかかわらず、 applyMaybeは
それに Maybe a型の値を食わせることができました。そ
れは、 Maybe a型の値に付いてくる文脈、つまり計算が
失敗しているかもしれないという文脈を考慮することで
可能になったのです。 applyMaybe （のちの >>= ）が、
Nothing か Justかの文脈を処理してくれるので、関数 a -> Maybe b の中で
は、その値を普通の値として扱うことができたのです。
同じ調子で、ログの付いた値、つまり (a, String) 型の値と、 a -> (b,

String) 型の関数の 2 つを取り、その値を関数のほうに食わせる関数を作りま
しょう。名前は applyLogにしましょう。 (a, String)値は、失敗の可能性と
いう文脈ではなく、ログを表す値が付いているという文脈を持ちます。したがっ
て applyLog は、元の値に付いてきたログを失うことなく、関数が新たに生み
出したログと結合するように注意を払ってくれます。これが applyLog の実装
です。

applyLog :: (a, String) -> (a -> (b, String)) -> (b, String)
applyLog (x, log) f = let (y, newLog) = f x in (y, log ++ newLog)

これまで文脈付きの値を関数に食わせたいと思ったら、まず実際の値を文
脈から分離して、それに関数を適用し、それでもって文脈がどうなったかを見
る、という手順をとってきました。例えば Maybe モナドを扱うときは、まず
それが Just x であるかを調べ、もしそうだったら x を取り出して関数を適用
しました。今回も、実際の値はとても簡単に見つかりますね。だって本来の値
とログのペアを扱っているのですから。というわけで、まず値のほうを取り出
し、 xと名づけ、関数 fを適用します。すると (y, newLog)というペアが手に
入ります。ここで y は新しい値で、 newLog は新しいログです。でも、ここで
newLogを返してしまうと、古いログは結果から消えてしまいますから、代わり
に (y, log ++ newLog) を返します。ここでは 2 つのログを結合するのに ++

を使っています。
applyLogはこんなふうに動作します。

ghci> (3, "Smallish gang.") ‘applyLog‘ isBigGang
(False,"Smallish gang.Compared gang size to 9.")
ghci> (30, "A freaking platoon.") ‘applyLog‘ isBigGang
(True,"A freaking platoon.Compared gang size to 9.")

oyaji (20170810-501DAE64)

318 第 14章 もうちょっとだけモナド

実行結果は以前と似ていますが、今度は盗賊団の人数にはじめからログが付い
ていて、それが結果のログにも含まれています。

applyLogをもっと使ってみましょう。

ghci> ("Tobin", "Got outlaw name.") ‘applyLog‘ ⇨
(\x -> (length x, "Applied length."))

(5,"Got outlaw name.Applied length.")
ghci> ("Bathcat", "Got outlaw name.") ‘applyLog‘ ⇨

(\x -> (length x, "Applied length."))
(7,"Got outlaw name.Applied length.")

ラムダ式の中で xがタプルではなくただの文字列になっており、ログの追記は
applyLogが面倒を見てくれているのが分かりますか？

モノイドが助けにきたよ
現状の applyLogは (a, String)型の値を取るようになっていますが、ログ

は別に Stringである必要はないですよね？ ログへ追記するのには ++を使って
いるんだから、文字のリストではなく、任意の型のリストが使えるんじゃないで
しょうか？ もちろん、そのとおりです。ですから applyLogの型はこれに変え
られます。

applyLog :: (a, [c]) -> (a -> (b, [c])) -> (b, [c])

これでログはリストになりました。ただし、最初のリストと関数が返すリスト
の中身の型は同じでないといけません。そうでなければ ++を使ってくっつけら
れないですからね。
じゃあ、 ByteString には使えるでしょうか？ いかにもできそうですよ
ね。ところが、現状の型ではリストに対してしか使えません。 ByteString の
applyLog は別に作らないといけないのでしょうか……、待って！ リストも
ByteStringも Monoid型クラスです。ということは、どちらも mappendを実装
しているということです。そして mappendはまさにものをくっつける操作です。
見てください。

ghci> [1,2,3] ‘mappend‘ [4,5,6]
[1,2,3,4,5,6]
ghci> B.pack [99,104,105] ‘mappend‘ B.pack [104,117,97,104,117,97]
Chunk "chi" (Chunk "huahua" Empty)

いいね！ これで applyLog が任意のモノイドを受け付けるようにできます。
これを反映するよう、型と実装を変えないといけませんね。 ++を mappendに取
り替えて、っと。

applyLog :: (Monoid m) => (a, m) -> (a -> (b, m)) -> (b, m)
applyLog (x, log) f = let (y, newLog) = f x in (y, log ‘mappend‘ newLog)

oyaji (20170810-501DAE64)

14.1 Writer？ 中の人なんていません！ 319

これで、 applyLogが付加する値は任意のモノイド値になったので、別にタプ
ルを「値とログの組」と解釈する必要はなくなりました。今や、「値と、モノイ
ド値のおまけ」とみなすことができます。例えば、商品の名前と価格（モノイド
値）の組というのはどうでしょう。 newtypeの Sumを使うだけで、商品を扱う
とき価格が加算されることを保証できます。例えば、これはぶっきらぼうな食事
の注文を取って、飲み物も出してくれる関数です。

import Data.Monoid

type Food = String
type Price = Sum Int

addDrink :: Food -> (Food, Price)
addDrink "beans" = ("milk", Sum 25)
addDrink "jerky" = ("whiskey", Sum 99)
addDrink _ = ("beer", Sum 30)

ここでは、食べ物を文字列で表し、 Sumで包んだ Intで値段を追跡していま
す。復習ですが、 Sum を mappend すると、包まれた値は足し算されるのでし
たね。

ghci> Sum 3 ‘mappend‘ Sum 9
Sum {getSum = 12}

addDrink関数はかなりシンプルです。まず、豆を食べているときは、"milk"

と一緒に Sum 25 を返します。つまり 25 セントが Sum に包まれているわけで
す。次に、ジャーキーを食べているときは、ウィスキーを飲むことにします。そ
れ以外のものを食べるときはビールです。この関数を、普通に「食べ物」だけに
適用しても、大して面白いことは起こりません。でも、「食べ物と値札の組」に
applyLogを使って適用するのは一見の価値ありです。

ghci> ("beans", Sum 10) ‘applyLog‘ addDrink
("milk",Sum {getSum = 35})
ghci> ("jerky", Sum 25) ‘applyLog‘ addDrink
("whiskey",Sum {getSum = 124})
ghci> ("dogmeat", Sum 5) ‘applyLog‘ addDrink
("beer",Sum {getSum = 35})

ミルクは 25セントですが、10セントの豆と一緒に頼むと 35セント払うこと
になります。
これで、おまけの値の用途はログに限らないことがはっきりしましたね。モノ
イド値だったら何でもよく、その値のくっつけ方はモノイド次第です。実際、ロ
グを扱っているときは文字列結合でしたが、今は足し算になってます。

addDrink が返す値は (Food, Price) のタプルなので、それにもう一度
addDrinkを適用して、飲み物を追加注文し、値段の合計を知ることができます。

oyaji (20170810-501DAE64)

320 第 14章 もうちょっとだけモナド

やってみましょう。

ghci> ("dogmeat", Sum 5) ‘applyLog‘ addDrink ‘applyLog‘ addDrink
("beer",Sum {getSum = 65})

犬の肉に飲み物を注文すると、ビールがきて 30セント追加されるので、結果は
("beer", Sum 35)になります。それにもう一度 applyLogを使って addDrink

すると、もう 1杯ビールがきて ("beer", Sum 65)になります。

Writer 型
これで、「モノイドのおまけの付いた値」がいかにもモナド値のように振る舞

うことが分かりましたね。では、そのような値の Monadインスタンスを見ていこ
うじゃないですか。 Control.Monad.Writerモジュールが、 Writer w a型と
その Monadインスタンス、それに Writer w a型を扱うための便利な関数をエ
クスポートしています。
値にモノイドのおまけを付けるには、タプルに入れるだけです。 Writer w a

型の実体は、そんなタプルの newtypeラッパーにすぎず、定義はとてもシンプ
ルです。

newtype Writer w a = Writer { runWriter :: (a, w) }

newtypeに包むことで、 Monadのインスタンスにするときに既存のタプルに
は影響を与えないようになっています。型引数 aが主となる値の型を表し、型引
数 wがおまけのモノイド値の型を表しています。

Control.Monad.Writerモジュールの開発者は、 Writer w a型の内部実装
を変える権利を保持しておきたいそうで、 Writer 値コンストラクタをエクス
ポートしていません。しかし Writerコンストラクタと同じことをする writer

関数を公開しています。これを使えばタプルを Writer値に変えられます。
Writer値コンストラクタがエクスポートされていないので、それとパターン

マッチして中身を取り出すこともできません。その代わり runWriter関数を使
います。これが newtype ラッパーである Writer 値を取って中身のタプルを返
してくれます。

Monadインスタンスは、こんなふうに定義されています。

instance (Monoid w) => Monad (Writer w) where
return x = Writer (x, mempty)
(Writer (x, v)) >>= f = let (Writer (y, v')) = f x

in Writer (y, v ‘mappend‘ v')

oyaji (20170810-501DAE64)

14.1 Writer？ 中の人なんていません！ 321

まずは >>=から見ていきましょう。こ
の実装は applyLog と基本は同じ、ただ
しタプルが Writerによる newtypeラッ
パーの中にいる点だけが違っており、パ
ターンマッチを使って中身を取り出して
います。出てきた値 xに関数 fを適用し
ています。これで Writer w a型の値が
得られますから、さらに let式でパター

ンマッチします。そして yを新しい計算結果とする一方、 mappendを使って 2
つのモノイド値を結合します。結合して得られた計算結果とモノイドをタプル
に入れ、続いて Writerコンストラクタで包むことで、返り値を Writer型にし
ています。生のタプルを返すわけにはいきませんからね。
じゃあ return のほうはどうでしょう？ return は、値を取って、それを再
現できるような最小限のデフォルト文脈に入れる必要があります。 Writer値に
とってそのような最小限の文脈、つまりおまけのモノイド値って何でしょう？
他のモノイド値になるべく影響を与えないモノイド値を選ぶとしたら、 mempty

を使うのがよさそうですね。
mempty はモノイドの単位元を表現するのに使われるのでしたね。例えば ""

とか Sum 0 とか、空の ByteString とか。 mempty と、何か他のモノイド値を
mappend した結果は、常にその「他のモノイド値」です。そこで、 return を
使って Writer値を作り、それを >>=を使って他の関数に食わせたら、結果のモ
ノイド値は、関数が返したものがそのまま入っているはずです。

3という数に対して、組み合わせるモノイドを変えながら returnを使ってみ
ようじゃないですか。

ghci> runWriter (return 3 :: Writer String Int)
(3,"")
ghci> runWriter (return 3 :: Writer (Sum Int) Int)
(3,Sum {getSum = 0})
ghci> runWriter (return 3 :: Writer (Product Int) Int)
(3,Product {getProduct = 1})

Writerには Showインスタンスがないので、 runWriterを使って、 Writer

値を show が使えるタプルに変換しています。 String の単位元は空文字列に
なっています。 Sum に対する単位元は 0 です。0 は何と足しても相手を返しま
すからね。 Productを使ったら、単位元は 1になります。

Writer インスタンスは fail の実装を与えていないので、 do 記法の中でパ
ターンマッチに失敗すると errorが呼ばれます。

oyaji (20170810-501DAE64)

322 第 14章 もうちょっとだけモナド

Writer を do記法で使う
こうして Monadインスタンスができたので、 Writerを do記法で自由に扱え

ます。 do記法は複数の Writerをまとめて何かしたいときに便利です。他のモ
ナドの場合と同じく、プログラマにとっては普通の値のように扱える裏で、モナ
ドが文脈の面倒を見てくれます。今回の場合は、すべてのモノイド値が mappend

され、最終結果に反映されます。
Writerを do記法で使い、2つの数を掛け算する例です。

import Control.Monad.Writer

logNumber :: Int -> Writer [String] Int
logNumber x = writer (x, ["Got number: " ++ show x])

multWithLog :: Writer [String] Int
multWithLog = do

a <- logNumber 3
b <- logNumber 5
return (a*b)

logNumber は、数を取って Writer 値を作り出します。 Writer 値コンスト
ラクタを使わずに、 writer 関数を使って Writer 値を作っているところがポ
イントです。モノイド値としては文字列のリストを使うことにし、入ってきた
数に対して「その数が通ったよ」という記録を単一要素リストとして残します。
multWithLog は、全体は 1 つの Writer 値で、中では 3 と 5 を掛け算しつつ、
ログをもれなく残します。 returnを使って、 a*bを最終結果として返していま
す。 returnは、引数を最小の文脈に入れるものでしたから、きっとログには何
も追加しないだろうと、自信をもって言えます。
このコードを実行するとこうなります。

ghci> runWriter multWithLog
(15,["Got number: 3","Got number: 5"])

時には、ある時点でモノイド値だけを追記したいことがあるかもしれません。
そんなとき便利なのが tellです。 tellは MonadWriter型クラスの一部です。
Writerの場合は、モノイド値、例えば ["This is going on"]を取り、ダミー
値 ()を返しつつ、そのモノイド値を追記するという Writer を返します。モナ
ドが ()を返すときは、返り値を変数に束縛する必要はありません。

multWithLogの特別な報告が追加されたバージョンです。

oyaji (20170810-501DAE64)

14.1 Writer？ 中の人なんていません！ 323

multWithLog :: Writer [String] Int
multWithLog = do

a <- logNumber 3
b <- logNumber 5
tell ["Gonna multiply these two"]
return (a*b)

return (a*b)が最後の行になっているのは重要です。 do式の最後のモナド
の結果が、 do式全体の結果になるというルールだからです。仮に tellを最後
の行に置いたら、do式の結果は ()になり、掛け算の結果は失われていたでしょ
う。ただし、ログは変更を受けません。これが動作です。

ghci> runWriter multWithLog
(15,["Got number: 3","Got number: 5","Gonna multiply these two"])

プログラムにログを追加しよう！
ユークリッドの互除法は、2つの数を取ってその最大公約数（2つの数をどち

らも割り切れる数のうち最大のもの）を求めるアルゴリズムです。Haskell に
は、そのものずばり gcd関数がすでにあるのですが、せっかくなのでログを残す
機能の付いたバージョンを自前で作ってみましょう。まず、これが普通のアルゴ
リズムです。

gcd' :: Int -> Int -> Int
gcd' a b

| b == 0 = a
| otherwise = gcd' b (a ‘mod‘ b)

このアルゴリズムはとてもシンプルです。まず、第二引数がゼロかどうかを
判定します。もしゼロなら、第一引数を返します。そうでないなら、第二引数と
「第一引数を第二引数で割った余り」との最大公約数を返します。
例えば、8と 3の最大公約数を、このアルゴリズムのとおりに求めてみましょ
う。まず、3は 0じゃないので、3と 2の最大公約数を求めることになります（8
を 3で割った余りは 2ですから）。2は、これも 0ではないので、今度は 2と 1
です。またしても 0じゃないので、アルゴリズムは 1 と 0に進み、ようやくの
ことで第二引数が 0になったので、1を返します。あのコードと答は一致するで
しょうか。

ghci> gcd' 8 3
1

一致しましたね。たいへんよくできました！ さて、この結果に、ログの役割
を果たすモノイド値、という文脈を付けたいわけです。さっきみたいに文字列の

oyaji (20170810-501DAE64)

324 第 14章 もうちょっとだけモナド

リストをログとして使いましょう。ということは、新しい gcd'関数の型はこう
なるはずです。

gcd' :: Int -> Int -> Writer [String] Int

あとはこの関数にログを付けるだけです。こちらが完成したコードです。

import Control.Monad.Writer

gcd' :: Int -> Int -> Writer [String] Int
gcd' a b

| b == 0 = do
tell ["Finished with " ++ show a]
return a

| otherwise = do
tell [show a ++ " mod " ++ show b ++ " = " ++ show (a ‘mod‘ b)]
gcd' b (a ‘mod‘ b)

この関数は、普通の Int値を 2つ取って、Writer [String] Int、すなわち
ログ取りという文脈の付いた Intです。この関数は bが 0である場合、単純に
aを返す代わりに、 do式を使って Writer値を結果として返します。それには、
まず tellを使って終了したことを伝え、次に returnを使って aを do式の結
果としています。この do式の代わりに、こう書くこともできます。

writer (a, ["Finished with " ++ show a])

まあでも、 do式のほうが読みやすいんじゃないですかね。
次に、 bが 0ではない場合がきます。この場合、 modを使って aを bで割っ

た余りを求めたことを記録しておくことにします。それから do 式の 2 行目で
gcd'を再帰的に呼び出します。ここで、 gcd'は最後には Writer値を返すこと
を思い出すと、 gcd' b (a `mod` b) を do式の結果行に置いておくのは完全
に正しいことだと分かります。
この新しい gcd'を試してみましょう。その返り値は Writer [String] Int

であり、 newtypeから中身を取り出せばタプルとして読めるはずで、タプルの
第一要素は計算結果のはずです。やってみましょう。

ghci> fst $ runWriter (gcd' 8 3)
1

いいですね！ ログのほうはどうでしょう？ ログは文字列のリストですから、
mapM_ putStrLnでも使って画面に表示させてみることにしましょう。

ghci> mapM_ putStrLn $ snd $ runWriter (gcd' 8 3)
8 mod 3 = 2
3 mod 2 = 1
2 mod 1 = 0
Finished with 1

oyaji (20170810-501DAE64)

14.1 Writer？ 中の人なんていません！ 325

こんなふうに、普通のアルゴリズムを実行中に何をしてるか報告するアルゴリ
ズムに変えられるのって、すごいと思うんですよね。しかも、普通の値をモナド
値に変えるだけで、それができるんです。ログを集める作業は Writerの >>=の
実装が勝手にやってくれます。
このログ機能は、ほぼどんな関数にも追加できます。ただ、普通の値を Writer

値に、関数適用を >>=に変えればよいだけです（あるいは doのほうが可読性が
上がるかも）。

非効率なリスト構築
Writer モナドを使うときは、使うモナドに気をつ

けてください。リストを使うととても遅くなる場合が
あるからです。リストは mappend に ++ を使っていま
すが、 ++を使ってリストの最後にものを追加する操作
は、そのリストがとても長いと遅くなってしまいます。
さっき作った gcd' 関数のログ取りは速いほうでし

た。なぜなら、最終的に行われるリスト結合演算はこ
んな感じになっていたからです。

a ++ (b ++ (c ++ (d ++ (e ++ f))))

リストは左から右へ構築されるデータ構造です。こ
れが効率的なのは、まずリストの左辺を最後まで構築し、それから初めて右辺の
長いリストを結合しているからです。でも、うっかりすると、 Writerモナドを
使った結果こんなコードができかねません。

((((a ++ b) ++ c) ++ d) ++ e) ++ f

さっきのが右結合だったのに対し、これは左結合です。このコードは、右辺を
左辺に結合しようとするたびに、左辺をはじめから構築しないといけないので、
非常に非効率です！
今からお見せする関数は gcd'と似ていますが、ログの出力が逆順になってい

ます。再帰の各ステップは、まずプログラムの残りの部分のログを全部出力して
から今のステップをログの最後に追加するようになっています。

oyaji (20170810-501DAE64)

326 第 14章 もうちょっとだけモナド

import Control.Monad.Writer

gcdReverse :: Int -> Int -> Writer [String] Int
gcdReverse a b

| b == 0 = do
tell ["Finished with " ++ show a]
return a

| otherwise = do
result <- gcdReverse b (a ‘mod‘ b)
tell [show a ++ " mod " ++ show b ++ " = " ++ show (a ‘mod‘ b)]
return result

こいつは、まず再帰を呼び出してその結果を result という変数に束縛しま
す。それから今のステップをログに追加するので、現在のステップは再帰が生成
したログの最後にきます。最後に、再帰の結果を自身の計算結果として提示して
います。これを動かすと、こうなります。

ghci> mapM_ putStrLn $ snd $ runWriter (gcdReverse 8 3)
Finished with 1
2 mod 1 = 0
3 mod 2 = 1
8 mod 3 = 2

この関数は、 ++を右結合ではなく左結合で使ってしまうので、非効率的です。
このようなやり方で結合していくとリストでは非効率になってしまう場合が
あるので、常に効率的な結合をサポートするデータ構造を使うのが一番でしょ
う。そのようなデータ構造の 1つが差分リストです。

差分リストを使う
通常のリストに似ている差分リストですが、その実態はリストを取って別の

リストを先頭に付け加える関数です。例えば、 [1,2,3]と等価な差分リストは
\xs -> [1,2,3] ++ xsです。通常の空リストは []ですが、空の差分リストは
関数 \xs -> [] ++ xsとして表されます。
差分リストは効率の良いリスト結合をサポートします。普通のリストを 2つ、

++で結合するときは、左辺のリストを最後まで延々と辿っていって、そこに右
辺をくっつけないといけません。でも、差分リストというアプローチをとってリ
ストを関数として表現すると、何が起こるでしょう？

2つの差分リストを結合する操作は、こうです。

f ‘append‘ g = \xs -> f (g xs)

fと gは、リストを取ってその前に何かを付ける関数でしたね。例えば、fが
("dog"++)（別の書き方をすると \xs -> "dog" ++ xs）という関数で、 gが
("meat"++)という関数なら、 f `append` gは次の関数と等価になります。

oyaji (20170810-501DAE64)

14.1 Writer？ 中の人なんていません！ 327

\xs -> "dog" ++ ("meat" ++ xs)

2つの差分リストを結合した結果は、引数にまず 2つ目の差分リスト、続いて
1つ目の差分リストを適用する関数になるようです。
差分リストの newtypeラッパーを作りましょう。そうすればモノイドインス
タンスを作るのが楽になります。

newtype DiffList a = DiffList { getDiffList :: [a] -> [a] }

包まれているものの型は [a] -> [a]です。差分リストは、リストを取って同
じ型のリストを返す関数にすぎないからです。普通のリストを差分リストに変
えたり、その逆をするのは簡単です。

toDiffList :: [a] -> DiffList a
toDiffList xs = DiffList (xs++)

fromDiffList :: DiffList a -> [a]
fromDiffList (DiffList f) = f []

普通のリストを差分リストにするには、さっきもやったような方法で、そのリ
ストを引数リストの先頭に追加するような関数を作るだけです。そして差分リ
ストはリストの前に何かを結合する関数なので、その「何か」を取り出したかっ
たら、その関数を空リストに適用するまでです！
これが Monoidインスタンスです。

instance Monoid (DiffList a) where
mempty = DiffList (\xs -> [] ++ xs)
(DiffList f) ‘mappend‘ (DiffList g) = DiffList (\xs -> f (g xs))

差分リストをリストからリストへの関数と見た場合、 memptyは id関数であ
り mappendは関数合成になっていることが分かりますか？ これがうまく動くか
試してみましょう。

ghci> fromDiffList (toDiffList [1,2,3,4] ‘mappend‘ toDiffList [1,2,3])
[1,2,3,4,1,2,3]

最高だな！ これで gcdReverse関数の効率を上げられます。リストの代わり
に差分リストを使うだけです。

oyaji (20170810-501DAE64)

328 第 14章 もうちょっとだけモナド

import Control.Monad.Writer

gcd' :: Int -> Int -> Writer (DiffList String) Int
gcd' a b

| b == 0 = do
tell (toDiffList ["Finished with " ++ show a])
return a

| otherwise = do
result <- gcd' b (a ‘mod‘ b)
tell (toDiffList [show a ++ " mod " ++ show b ++

" = " ++ show (a ‘mod‘ b)])
return result

必要なことは、モノイドの型を [String]から DiffList Stringに変えるこ
とと、 tellを呼ぶ前に toDiffListで普通のリストを差分リストに変えること
だけです。ログがきちんと組み立てられてるか、確かめてみましょう。

ghci> mapM_ putStrLn . fromDiffList . snd . runWriter $ ⇨
gcdReverse 110 34

Finished with 2
8 mod 2 = 0
34 mod 8 = 2
110 mod 34 = 8

まず gcdReverse 110 34をし、それから runWriterを使って newtypeを剥
がし、 sndを使ってログだけを取り出し、 fromDiffListを使って通常のリス
トに変換し、最後にその要素を画面に表示させています。

性能の比較
差分リストがどのくらい速度を上げてくれるのか体感するために、こんな関数

を考えましょう。その関数は、自然数の引数を取って、ひたすらゼロまでカウン
トダウンしますが、 gcdReverseのように逆向きのログを生成することで、ログ
の中では数がカウントアップされるようにします。

finalCountDown :: Int -> Writer (DiffList String) ()
finalCountDown 0 = do

tell (toDiffList ["0"])
finalCountDown x = do

finalCountDown (x-1)
tell (toDiffList [show x])

この関数に 0を与えると、単にログを取ります。他の数では、まずその数マイ
ナス 1 のカウントダウンを呼び出してから、その数をログに加えます。ですか
ら、 finalCountDownを 100に適用すると、文字列 "100"はログの最後にくる
わけです。

oyaji (20170810-501DAE64)

14.2 Reader？ それはあなたです！ 329

この関数を GHCiに読み込ませて、巨大な数、そうですね 500000とかに適用
すると、素早く 0から数えだすのが見られます。

ghci> mapM_ putStrLn . fromDiffList . snd . runWriter $ ⇨
finalCountDown 500000

0
1
2
...

しかし、差分リストの代わりに普通のリストを使ったらどうでしょう？

finalCountDown :: Int -> Writer [String] ()
finalCountDown 0 = do

tell ["0"]
finalCountDown x = do

finalCountDown (x-1)
tell [show x]

で、GHCiに数え始めなさいと言うと、

ghci> mapM_ putStrLn . snd . runWriter $ finalCountDown 500000

めっちゃ遅いです……。
もちろん、これはプログラムの速度を測る正しい科学的な方法ではありませ

ん。けれども、今回の場合、差分リスト版はすぐに結果を出し始めたのに対し、
リスト版は動きだす気配すらない、という違いは体感できたのではないでしょ
うか。
あ、ところで北欧メタルバンド、EUROPEの “The Final Countdown”が脳

内ループしてます？

14.2 Reader？ それはあなたです！
第 11章では、関数を作る型、 (->) rも、

Functor のインスタンスであることを見ま
した。関数 fで関数 gを写すと、「 gが取る
のと同じ型の引数を取り、それに gを適用し
たものに fを適用して返す」関数ができるの
でした。基本的にやってることは、「 gのような関数」を作っているわけですが、
ただし結果を返す前に fが適用されているわけです。これが例です。

ghci> let f = (*5)
ghci> let g = (+3)
ghci> (fmap f g) 8
55

oyaji (20170810-501DAE64)

330 第 14章 もうちょっとだけモナド

それから、関数はアプリカティブファンクターであることも見ましたね。これ
により、関数が将来返すであろう値を、すでに持っているかのように演算できる
ようになりました。これが例です。

ghci> let f = (+) <$> (*2) <*> (+10)
ghci> f 3
19

(+) <$> (*2) <*> (+10)という式は、「ある数を引数に取って、それに (*2)

と (+10)を適用し、その結果どうしを足し算する関数」になります。例えば、こ
の関数を 3に適用すると (*2)と (+10)の両方が 3に適用され、 6と 13ができ
ます。それから 6と 13を引数に (+)が呼ばれ、結果は 19になります。

モナドとしての関数
関数の型 (->) rはファンクターであり、アプリカティブファンクターである

ばかりでなく、モナドでもあります。これまでに登場したモナド値と同様、関数
もまた文脈を持った値だとみなすことができるのです。関数にとっての文脈と
は、値がまだ手元になく、値が欲しければその関数を別の何かに適用しないとい
けない、というものです。
これまでに、ファンクターやアプリカティブファンクターとして働く関数には
精通してきましたから、さっそく Monadインスタンスの設計を見にいきましょ
う。インスタンス宣言は Control.Monad.Instancesにあり、こんな感じのソー
スになってます。

instance Monad ((->) r) where
return x = _ -> x
h >>= f = \w -> f (h w) w

関数にとっての pureの実装は前に見ましたね。 returnもほとんど pureと
同じです。値を取って、その値を結果として返す最小限の文脈を常に返す。関数
の場合、常に同じ値を返すようにする唯一の方法は、引数をガン無視させること
です。

>>= の実装は暗号めいて見えるかもしれませんが、実際には見かけほど複雑
ではありません。 >>= を使ってモナド値を関数に食わせるときは、結果は常に
モナド値になります。ですからこの場合、ある関数を別の関数に食わせた結果
は、また関数になるはずです。それが、結果の式がラムダ（ \）から始まってい
る理由です。
これまで見てきた >>= の実装はすべて、何らかの形で値をモナドから取り出

して、それに関数 f を適用するものでした。ここでも同じことが起こっていま
す。関数から結果を取り出すには、それを何かに適用しないといけません。なの

oyaji (20170810-501DAE64)

14.2 Reader？ それはあなたです！ 331

で、 (h w)を使って、それに fを適用しているわけです。 fはモナド値（ここ
では関数）を返すので、 wにもそいつを適用します。

Readerモナド
この時点で >>= がどう働くのか飲み込めなかったとしても心配なく。いくつ

か例を見れば、これがすごくシンプルなモナドであることが分かるでしょう。こ
れが関数モナドを使っている do式です。

import Control.Monad.Instances

addStuff :: Int -> Int
addStuff = do

a <- (*2)
b <- (+10)
return (a+b)

これは前に見たアプリカティブ式と同じものですが、関数がモナドであること
を使っているバージョンです。 do式は常にモナド値を生み出すもので、今回も
例外ではありません。この do式の作るモナドは関数です。 addStuffは整数を
1つ引数に取ります。まず、それに (*2)が適用され、結果は aになります。同
じ整数に (+10) が適用され、その結果が b です。 return は、他のモナドと同
様、文脈には何も影響せず、引数に与えられた値をそのまま提示するモナド値を
作ります。これが a+b を関数全体の結果として提示します。試してみれば前と
同じ結果が返ってくるはずです。

ghci> addStuff 3
19

(*2)と (+10)はどちらも 3に適用されます。実は、return (a+b)も同じく
3に適用されるんですが、引数を無視して常に a+bを返しています。そういうわ
けで、関数モナドは Reader モナドとも呼ばれたりします。すべての関数が共通
の情報を「読む」からです。このことをもっと明確にするために、 addStuffを
こんなふうに書き直すこともできます。

addStuff :: Int -> Int
addStuff x = let

a = (*2) x
b = (+10) x
in a+b

このように、Readerモナドは関数を文脈付きの値として扱うことを可能にし
ます。関数が返すであろう値をすでに知っているつもりができるのです。それ
ができるのは、複数ある関数を貼り付けて 1つの関数を作り、それに渡った引数
を構成要素の関数すべてに配っているからです。というわけで、もし最後の引数

oyaji (20170810-501DAE64)

332 第 14章 もうちょっとだけモナド

が届くのを待っている関数がたくさんあって、しかもそれらに渡したい値はみな
同じ、という状況があれば、Readerモナドを使って未来の結果を取り出すこと
ができます。うまく動くことは >>=が保証してくれます。

14.3 計算の状態の正体
Haskell は純粋な言語ですから、

Haskellのプログラムはグローバル
な状態や変数を書き換えたりできな
い関数だけで構成されています。関
数は常に同じ計算をして値を返す運
命なのです。この制限は、実のとこ
ろプログラムについて考えるのを楽
にしてくれます。だって、特定の時
刻でのすべての変数の値を考慮に入
れる必要がなくなるわけですから。
ところが、「状態」が本質的な問

題、時間とともに変わっていく何ら
かの状態に依存している計算というのは確かにあります。Haskellはそういった
計算でも問題なく扱えるんですが、モデル化するのは少し骨が折れます。そこで
Haskell には State モナドが用意されています。これさえあれば、状態付きの
計算などいとも簡単。しかもすべてを純粋に保ったまま扱えるんです。
第 9章で乱数を見たときには、乱数ジェネレータを引数に取り、乱数と新しい
ジェネレータを返す関数を扱いました。複数の乱数が必要であれば、乱数と一緒
に出てきた新しいジェネレータを常に使うよう注意する必要がありました。例
えば、ジェネレータ StdGenを引数に取り、それを使ってコインを 3回投げる関
数を作るには、こうします。

threeCoins :: StdGen -> (Bool, Bool, Bool)
threeCoins gen =

let (firstCoin, newGen) = random gen
(secondCoin, newGen') = random newGen
(thirdCoin, newGen'') = random newGen'

in (firstCoin, secondCoin, thirdCoin)

この関数にジェネレータ genを渡すと、まず random genが Bool値と新たな
ジェネレータを返します。2枚目のコインを投げるには、この新しいジェネレー
タを使います。以下同様。

oyaji (20170810-501DAE64)

14.3 計算の状態の正体 333

Haskell以外のほとんどの言語では、乱数に添えて新しいジェネレータを返す
必要などありません。だってジェネレータの状態を上書きすればいいじゃん！
でも Haskell は純粋な言語ですから、それはできません。そこで、状態を受け
取って、結果を作るとともに新しい状態も作り、その新しい状態を使って次の結
果を作る必要があります。
そんなふうに状態を手動で扱うのを避けるには Haskell の純粋性をあきらめ

る必要がある、と考えるかもしれません。でも、その必要はないんです。なぜな
ら、Stateモナドという、Haskellプログラミングをこんなに素敵にしている純
粋性を少しも損なうことなく状態を扱うための面倒な作業を裏でやってくれる
特別にかわいいモナドがあるからです。

状態付きの計算
状態付きの計算を実演するために、まずは型を与えてみましょう。状態付きの

計算とは、ある状態を取って、更新された状態と一緒に計算結果を返す関数とし
て表現できるでしょう。そんな関数の型は、こうなるはずです。

s -> (a, s)

sは状態の型で、 aは状態付き計算の結果です。

NOTE Haskell以外のほとんどの言語における「代入」という操作は、状態付きの計算と捉
えることができます。例えば、手続き型言語で x = 5と書くと、普通は変数 xに 5が
入り、ついでに式の値も 5になります。この挙動をじっくり観察すると、（これまで
に代入されたすべての変数という）状態を取って、新しい状態と、（ 5）という結果
を返す関数に見えてきませんか？ この場合の新しい状態というのは、代入前の変数
のマッピングから新たに代入された部分だけが変わっている状態です。

このような状態付きの計算（状態を取って、計算結果と新しい状態を返す関
数）もまた、文脈付きの値だとみなすことができます。計算の結果が「生の値」
であり、その計算結果を得るためには初期状態を与える必要があること、そし
て、計算の結果を得るのと同時に新しい状態が得られるというのが「文脈」にあ
たります。

スタックと石
スタックをモデル化したいとしましょう。 stack とは、いくつかのデータを

格納でき、次の 2つの操作をサポートするデータ構造です。s Push：スタックのてっぺんに要素を積む。s Pop：スタックのてっぺんの要素を取り除く。

oyaji (20170810-501DAE64)

334 第 14章 もうちょっとだけモナド

スタックを表現するのにはリストを使い、リストの先頭がスタックのてっぺん
に対応することにします。次のような 2つのヘルパー関数を作りましょう。s pop：スタックを引数に取って、要素を 1つ取り出し、その取り出された

要素を返す関数。ついでにその要素を除いた後の新しいスタックも返す。s push：ある要素とスタックを引数に取り、その要素をスタックに積む関
数。 ()を結果として返し、ついでに新しいスタックも返す。

これがその関数です。

type Stack = [Int]

pop :: Stack -> (Int, Stack)
pop (x:xs) = (x, xs)

push :: Int -> Stack -> ((), Stack)
push a xs = ((), a:xs)

push の返り値は () にしました。 push 操作の仕事はスタックを変更するこ
とで、特に重要な結果値というものはないからです。 pushの第一引数だけを部
分適用すると、状態付き計算が生まれます。 popは、その型からして、すでに状
態付き計算になっていますね。
これらの関数を使って、スタックをシミュレートするちょっとしたコードを書

いてみましょう。とりあえず、3でも積んで、それから 2つばかし値を取り出し
てみましょうか。こうです。

stackManip :: Stack -> (Int, Stack)
stackManip stack = let

((), newStack1) = push 3 stack
(a , newStack2) = pop newStack1
in pop newStack2

この関数は、 stack を取って、まず push 3 stack をします。その結果は
タプルで、第一要素が () 、第二要素は新しいスタックです。こいつの名前は
newStack1にしましょう。次に newStack1から新しい値を取り出します。その
結果は a という数（さっき積んだ 3が入っているはず）と、また新しいスタック
です。今度は newStack2という名前にしましょう。さらに、 newStack2から数
を取り出し、数 bとスタック newStack3のタプルを手に入れます。 stackManip

は、このタプルをそのまま返しています。使ってみましょう。

ghci> stackManip [5,8,2,1]
(5,[8,2,1])

結果は 5で、新しいスタックは [8,2,1]になりました。 stackManip自身も
状態付き計算になっていたことに気づきましたか？ 今やったのは、状態付き計

oyaji (20170810-501DAE64)

14.3 計算の状態の正体 335

算をいくつか取って糊付けするという操作だったわけです。それってどこかで
聞いたことがあるような……。
さっきの stackManipのコードは、ちょっと長ったらしいですよね。すべての
状態付き計算に、手で状態を与え、いちいち回収して名前をつけて、また次のや
つに与えています。各関数にスタックを手動で与えるのではなくて、こんなふう
に書けたらすごいと思いませんか？

stackManip = do
push 3
a <- pop
pop

なんと、Stateモナドを使うとまさにこんなふうに書けちゃうんです！ State

モナドがあれば、このような状態付き計算を、状態に手を触れる必要もなく扱え
るのです。

Stateモナド
Control.Monad.State モジュールは、状態付き計算を包んだ newtype を提

供しています。これがその定義です。

newtype State s a = State { runState :: s -> (a, s) }

State s aは、 s型の状態を操り、 a型の結果を返す状態付き計算です。
Control.Monad.Writerと同じく、 Control.Monad.Stateも値コンストラ

クタをエクスポートしていません。状態付き計算を State の newtypeに包みた
いときは、 state関数を使いましょう。 state関数は Stateコンストラクタと
まったく同じ動作をします。
これで、状態付き計算とは何であって、それがどうして文脈付きの値とみなせ
るのかが分かりました。じゃあ状態付き計算の Monadインスタンスを見ていき
ましょう。

instance Monad (State s) where
return x = State $ \s -> (x, s)
(State h) >>= f = State $ \s -> let (a, newState) = h s

(State g) = f a
in g newState

return は、値を取って常にその値を結果として返すような状態付き計算に
したいわけです。それが、ラムダ式 \s -> (x, s) が出てくる理由です。こい
つは常に x を状態付き計算の結果として提示し、状態には一切手をつけませ
ん。 return は値を最小限の文脈に入れるという約束だからです。というわけ

oyaji (20170810-501DAE64)

336 第 14章 もうちょっとだけモナド

で、 returnはある値を提示し、状態を不変に保つような状態付き計算になるわ
けです。

では、 >>= はどうでしょう？ まず、状態付き
計算を、 >>=を使って関数に食わせた結果もまた
状態付き計算にならないといけない、ですよね？
そこでまず State の newtype ラッパーを書きま
す。それからラムダです。このラムダ式が新しい
状態付き計算になるのです。では、ラムダ式の中
には何を書けばいいのでしょう？ とにかく 1 つ
目の状態付き計算から結果の値を取り出さないと
いけません。僕たちは、まさに状態付き計算の中
にいますから、現在の状態 sを状態付き計算 hに
渡すことならできます。すると計算結果と新しい
状態のペア (a, newState)が出てきます。

これまでのところ、 >>= 演算子を実装するときは、必ずまず左辺のモナド値
を使い、結果だけを取り出した後、それに右辺の関数 fを適用して、新しいモナ
ド値を得るという手順を踏みました。 Writerを作ったときは、その手順に従っ
て新しいモナド値を得た後、さらに 2つのモノイド値を mappendする作業が必
要でした。今回は、まず f aして、新しい状態付き計算 gを取り出しています。
こうして新しい「状態付き計算」と新しい「状態」（ newStateという名前）が
揃ったら、あとは状態付き計算 g を newState に適用するだけです。その結果
は、最終結果と最終状態のタプルです！
このように、 >>=を使えば 2つの状態付き計算を糊付けすることことができ
ます。2つ目の計算は、1つ目の計算の結果を受け取る関数の中に隠れています。
さて、popと pushはすでに状態付き計算ですから、Stateラッパーに包むのは
簡単です。

import Control.Monad.State

pop :: State Stack Int
pop = state $ \(x:xs) -> (x, xs)

push :: Int -> State Stack ()
push a = state $ \xs -> ((), a:xs)

関数を Stateの newtypeラッパーで包むのに、 State値コンストラクタを直
接使う代わりに state関数を使っているのがポイントですよ。

popはそのまま状態付き計算ですし、pushは Intを取って状態付き計算を返
す関数です。これで、さっきの 3を pushしてから 2回 popする例を、こう書け

oyaji (20170810-501DAE64)

14.3 計算の状態の正体 337

ます。

import Control.Monad.State

stackManip :: State Stack Int
stackManip = do

push 3
a <- pop
pop

みごと、1つの pushと 2つの popを糊付けして、1つの状態付き計算が作れ
ました。こいつの newtypeラッパーを剥がせば、初期状態を与えると動きだす
関数が出てきます。

ghci> runState stackManip [5,8,2,1]
(5,[8,2,1])

ところで、2行目の popの結果 aは一度も使ってませんから、 aに束縛する必
要はなかったですね。だから、こう書いても問題ありません。

stackManip :: State Stack Int
stackManip = do

push 3
pop
pop

素敵。でも、もうちょっとややこしいことはできるでしょうか？ 例えば、ス
タックから 1つの数を取り出し、それが 5だったらそっと元に戻す、でも 5じゃ
なかったら、代わりに 3と 8を積む、とかどうでしょう。これがそのコードです。

stackStuff :: State Stack ()
stackStuff = do

a <- pop
if a == 5

then push 5
else do

push 3
push 8

これは直感的に書けましたね。では初期スタックを与えて走らせてみま
しょう。

ghci> runState stackStuff [9,0,2,1,0]
((),[8,3,0,2,1,0])

do式はモナド値を作ること、そして Stateモナドに関しては do式もまた状
態付きの関数であることを思い出してください。 stackManip と stackStuff

はどちらも普通の状態付き計算ですから、この 2つをさらに糊付けして、もっと
大きな状態付き計算が作れます。

oyaji (20170810-501DAE64)

338 第 14章 もうちょっとだけモナド

moreStack :: State Stack ()
moreStack = do

a <- stackManip
if a == 100

then stackStuff
else return ()

現在のスタックに stackManip を使った結果が 100 なら、 stackStuff を実
行します。それ以外の場合は、何もしません。 return ()は、状態に変更を加
えず何もしないモナドです。

状態の取得と設定
Control.Monad.State モジュールは、2 つの便利な関数 get と put を備え

た、MonadStateという型クラスを提供しています。 Stateモナドに対する get

の実装はこうです。

get = state $ \s -> (s, s)

現在の状態を取ってきて、それを結果として提示しているだけですね。
put関数は、状態型の引数を取り、「その状態を、現在の状態に上書きする状

態付き関数」を返します。

put newState = state $ \s -> ((), newState)

というわけで、この putと getがあれば、現在のスタックを見たり、現在の
スタックを丸ごとすり替えたりできます。こんなふうに。

stackyStack :: State Stack ()
stackyStack = do

stackNow <- get
if stackNow == [1,2,3]

then put [8,3,1]
else put [9,2,1]

また、 get と put を使って pop や push を実装することもできます。まず、
popはこう。

pop :: State Stack Int
pop = do

(x:xs) <- get
put xs
return x

get を使ってスタック全体を取り出し、それから先頭要素を取り除いた残り
を put を使って新しい状態にしています。それから return を使って x を結果
として提示しています。
で、こちらは getと putを使った pushの実装です。

oyaji (20170810-501DAE64)

14.3 計算の状態の正体 339

push :: Int -> State Stack ()
push x = do

xs <- get
put (x:xs)

get を使って現在のスタックの状態を取得し、それに x を積んだものを put

を使って新しい状態として設定するだけです。
ここで、もし >>= の型が State 値専用だったらどうなるか考えてみてくだ
さい。

(>>=) :: State s a -> (a -> State s b) -> State s b

状態の型 sは常に同じで、計算結果の型は aから bに変えられます。結果の型
が違う状態付き計算どうしは >>= で糊付けできますが、状態の型は同じでなけ
ればなりません。なぜだか分かりますか？ えっと、例えば Maybeモナドの >>=

はこんな型でした。

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

モナド自身の型、つまり Maybe が >>= の前後で変わらないのは当然ですね。
型の違う 2 つのモナドを >>= するのは無意味です。さて、 State モナドに戻
ると、モナドのインスタンスになっている型は State sでした。だから sが違
うってことは、 >>=を違う型のモナドの間で使おうとしてることになるんです。

乱数とStateモナド
この節の冒頭で、乱数を生成する処理ってきれいに書けないよねー、という話

をしました。乱数関数はジェネレータを引数に取り、乱数と一緒に新しいジェネ
レータを返すようにできていて、次の乱数を作るときは必ずこの新しいジェネ
レータを使い、古いほうを使わないよう気をつける必要があるのでした。 State

モナドがあれば、こういう処理はぐっと楽になります。
System.Randomモジュールの random関数の型は、こうです。

random :: (RandomGen g, Random a) => g -> (a, g)

randomは、乱数ジェネレータを引数に取り、乱数と新しいジェネレータを返
す関数である、と言っていますね。どう見ても状態付き計算です。 state 関数
を使って Stateの newtypeに包めば、状態の扱いをモナドに任せられます。

import System.Random
import Control.Monad.State

randomSt :: (RandomGen g, Random a) => State g a
randomSt = state random

oyaji (20170810-501DAE64)

340 第 14章 もうちょっとだけモナド

これでコインを 3枚投げる操作はこう書けるようになりました（ Trueが裏で
Falseが表ですよ）。

import System.Random
import Control.Monad.State

threeCoins :: State StdGen (Bool, Bool, Bool)
threeCoins = do

a <- randomSt
b <- randomSt
c <- randomSt
return (a, b, c)

threeCoins 関数は状態付き計算になりました。 threeCoins は、まず受け
取ったジェネレータを最初の randomStに渡します。すると randomStが乱数と
新しいジェネレータを返します。この新しいジェネレータが次に渡って、……と
続きます。最後に return (a, b, c) を使って、最も新しいジェネレータを変
えることなく、 (a, b, c)を結果として提示します。では使ってみましょう。

ghci> runState threeCoins (mkStdGen 33)
((True,False,True),680029187 2103410263)

これで、状態が必要な計算をするときの手間がぐっと減りましたね！

14.4 Errorを壁に
Maybeモナドは「失敗するかもしれない計算」という文脈を値に与えるもの

でしたよね。 Maybe値は Just somethingか Nothingのどちらかになれます。
これは確かに便利なのですが、 Nothingを受け取ったときに分かるのは、どこ
かで何かが失敗したというだけです。どんな失敗があったのか、という情報を詰
め込む余地はありません。

Either e a型も失敗の文脈を与えるモナドです。しかも、失敗に値を付加で
きるので、何が失敗したかを説明したり、そのほか失敗にまつわる有用な情報を
提供できます。 Either e aは、 Right値であれば正解や計算の成功を、 Left

値であれば失敗を表します。これが例です。

ghci> :t Right 4
Right 4 :: (Num t) => Either a t
ghci> :t Left "out of cheese error"
Left "out of cheese error" :: Either [Char] b

Either e はおおむね Maybeの強化版ですから、モナドになっているのはご
く自然なことです。 Maybeと同じく、失敗する可能性という文脈が付加された
値とみなせますが、今度はエラーがあった場合にも値を付けられるんです。

oyaji (20170810-501DAE64)

14.4 Errorを壁に 341

Either の Monad インスタンスは Maybe のものによく似ており、
Control.Monad.Errorモジュールで宣言されています。

instance (Error e) => Monad (Either e) where
return x = Right x
Right x >>= f = f x
Left err >>= f = Left err
fail msg = Left (strMsg msg)

returnは、いつもどおり、引数をデフォルトの最小限の文脈に入れる関数で
す。 returnは引数を Rightコンストラクタに入れます。 Rightは、計算に成
功して値があることを表すからです。これは Maybe モナドの return とよく似
ていますね。

>>= は 2 つの場合に分かれます。左辺が Left である場合と Right である
場合です。左辺が Right だった場合はその中の値に f を適用します。これは
Maybe モナドの Just の処理とジャストそっくりです。一方、左辺がすでにエ
ラーだった場合は、 Left値であることと、失敗を表す中身とがそのまま保たれ
ます。

Either eの Monadインスタンスには、もう 1つ必要条件があります。 Left

に入るほうの値の型（型変数 eにあたる型）は、 Error型クラスのインスタン
スでなければなりません。 Error型クラスは、エラーメッセージのように振る
舞える型のクラスです。 Error型クラスにはエラーを文字列として受け取って、
その型に変換する strMsg 関数が定義されています。 Error 型クラスの自明な
インスタンスは、むろん String です！ String の場合、 strMsg 関数は受け
取った文字列をそのまま返すだけです。

ghci> :t strMsg
strMsg :: (Error a) => String -> a
ghci> strMsg "boom!" :: String
"boom!"

もっとも、 Either を使うにあたってエラーは普通 Stringで表しますから、
Error型クラスについてそれほど心配はいりません。 do記法でのパターンマッ
チが失敗したときは、その失敗を表すのに Left値を使ってくれます。

Eitherを使ってみた例です。

ghci> Left "boom" >>= \x -> return (x+1)
Left "boom"
ghci> Left "boom " >>= \x -> Left "no way!"
Left "boom "
ghci> Right 100 >>= \x -> Left "no way!"
Left "no way!"

oyaji (20170810-501DAE64)

342 第 14章 もうちょっとだけモナド

>>=を使って Left値を関数に食わせると、関数は無視されて Left値がその
まま返ります。 Right値を関数に食わせた場合は、関数が Rightの中身に適用
されますが、この最後の例の場合は中身が何であれ関数が Left 値を返してい
ます。
じゃあ、 Right値を成功する関数に渡したら？ おっと、変な型エラーが出ま

したよ†1。うむむ。

ghci> Right 3 >>= \x -> return (x + 100)

<interactive>:1:0:
Ambiguous type variable ‘a' in the constraints:
‘Error a' arising from a use of ‘it' at <interactive>:1:0-33
‘Show a' arising from a use of ‘print' at <interactive>:1:0-33

Probable fix: add a type signature that fixes these type variable(s)

Haskell は、 Either e a という型の e の部分にどんな型を入れたらよいか
分からないと言ってます。表示しようとしているのは Right部分だけなのにね。
このエラーが出るのは Monadインスタンス宣言に Error eという型クラス制約
が付いていたからです。ですから、 Eitherモナドを使っていてさっきみたいな
エラーが出たら、型シグネチャを明記しましょう。

ghci> Right 3 >>= \x -> return (x + 100) :: Either String Int
Right 103

今度は動きました！
ここでつまずいた以外は、 Either モナドの使い勝手は Maybe モナドとよく

似ています。

NOTE 以前、 Maybeのモナド的側面を使って、ピエールのバランス棒に鳥がとまるようすを
シミュレートしました。練習問題として、ピエールが滑って落ちた瞬間に棒の左右に
何羽の鳥がとまっていたのか分かるよう、 Eitherモナドを使って書き直してみてく
ださい。

14.5 便利なモナディック関数特集
この節では、モナド値を操作したり、モナド値を返したりする関数（両方で

も可！）をいくつか紹介します。そんな関数はモナディック関数と呼ばれます。
モナディック関数にはまったく新しいものもありますが、お馴染みの関数のモ

†1 ［訳注］翻訳時点での Haskell Platform 2011.4.0.0 に同梱されている GHC 7.0.4 では、 Eitherのモナ
ドインスタンスは「 Control.Monad.Instancesモジュールで、 Error型クラスの文脈を付けない形
で宣言する」よう変更されています。そのため、上記のサンプルはエラーを出さずに成功するようになって
います。一方、 failは Left値でなく実行時エラーを生み出します。興味ある読者は現在の実装を確か
めてみてください。

oyaji (20170810-501DAE64)

14.5 便利なモナディック関数特集 343

ナド版も多いですよ。 filter とか foldl とか。ここでは、 liftM 、 join 、
filterM、そして foldMを紹介します。

liftMと愉快な仲間たち
このはてしなく遠いモナド坂を登

り始めたとき、最初にファンクター
を見ました。ファンクターは、「関数
で写せるもの」を表していました。
次に、ファンクターの強化版である
アプリカティブファンクターを見ま
した。これで、普通の関数を複数の
アプリカティブ値に適用したり、普
通の値をデフォルト文脈に入れたりできるようになりました。そしてついに、ア
プリカティブファンクターの強化版としてモナドを導入しました。モナドでは、
文脈の中の値を何らかの手段で普通の関数に食わせることが可能になったので
した。
というわけで、すべてのモナドはアプリカティブファンクターであり、すべ

てのアプリカティブファンクターはファンクターでもあります。 Applicative

型クラス定義には型クラス制約が付いていて、ある型をまず Functorのインス
タンスにしなければ Applicative のインスタンスにもできないようになって
ます。 Monad にも Applicative に対して同じような型クラス制約が付いてい
るべきだったのですが、なにしろ Monad型クラスが Haskellに導入されたのは
Applicative よりずっと昔だったもので、そのような型クラス制約は付いてな
いのです。
すべてのモナドはファンクターであるべきとはいえ、モナドの Functorイン

スタンスに頼らなくても、 liftM関数があれば大丈夫です。 liftMは関数とモ
ナド値を取って、関数でモナド値を写してくれます。そう、 fmap そのもので
す！ liftMの型はこうです。

liftM :: (Monad m) => (a -> b) -> m a -> m b

そしてこれが fmapの型です。

fmap :: (Functor f) => (a -> b) -> f a -> f b

もし Functorインスタンスと Monadインスタンスがそれぞれファンクター則
とモナド則を満たしているなら、 fmap と liftM はまったく同じものになりま
す（そしてこれまで出会ったモナドはちゃんと両方の法則を満たしてます）。こ
れは pure と return が常に同じことをする、というのと似ています。ただし、

oyaji (20170810-501DAE64)

344 第 14章 もうちょっとだけモナド

一方は Applicative型クラス制約、他方は Monad型クラス制約が付きます。で
は、 liftMを試してみましょう。

ghci> liftM (*3) (Just 8)
Just 24
ghci> fmap (*3) (Just 8)
Just 24
ghci> runWriter $ liftM not $ Writer (True, "chickpeas")
(False,"chickpeas")
ghci> runWriter $ fmap not $ Writer (True, "chickpeas")
(False,"chickpeas")
ghci> runState (liftM (+100) pop) [1,2,3,4]
(101,[2,3,4])
ghci> runState (fmap (+100) pop) [1,2,3,4]
(101,[2,3,4])

Maybe値を fmapするとどうなるかは、よくご存知ですよね。 liftMも同じ
ことをします。 Writer値に関しては、関数はタプルの第一要素を写します。次
に、状態付き計算に fmapや liftMを使った結果はまた状態付き計算になるんで
すが、その結果にくだんの関数が適用されることで値が変わります。さっきの例
で、popを走らせる前に (+100)で写しておかなかったら、結果は (1, [2,3,4])

になっていたことでしょう。
これが liftMの実装です。

liftM :: (Monad m) => (a -> b) -> m a -> m b
liftM f m = m >>= (\x -> return (f x))

do記法を使って書いてもかまいません。

liftM :: (Monad m) => (a -> b) -> m a -> m b
liftM f m = do

x <- m
return (f x)

モナド値 m を関数に食わせるのですが、そのモナドの結果に関数 f を適用し
てからデフォルトの文脈に入れています。モナド則によって、この操作は文脈
をまったく変えず、モナド値が提示する結果だけを変えることが保証されてい
ます。

liftMは Functor型クラスをまったく参照せずに実装されています。このこ
とは、 fmap（あるいは liftM。どちらの呼び方でも結構）はモナドが提供する
機能だけを使って実装できることを意味します。このことから、モナドは少なく
ともファンクター以上に強い、と結論付けられます。
さて、次はアプリカティブです。 Applicative型クラスの能力は、普通の関

数を、文脈付きの値にも、あたかも普通の値であるかのように適用させてくれる
ことでした。こんなふうに。

oyaji (20170810-501DAE64)

14.5 便利なモナディック関数特集 345

ghci> (+) <$> Just 3 <*> Just 5
Just 8
ghci> (+) <$> Just 3 <*> Nothing
Nothing

このアプリカティブ・スタイルは、人生をかなり楽にしてくれます。まず <$>

はただの fmap。次に <*>は Applicative型クラスの関数で、こんな型が付い
ています。

(<*>) :: (Applicative f) => f (a -> b) -> f a -> f b

そう、 fmap に似ていますね。ただし、関数自身も文脈の中に入っています。
どうにかして関数を文脈から取り出して f a を写し、さらに文脈を再編成する
必要がありますね。Haskell の関数はデフォルトですべてカリー化されている
ので、 <$> と <*>を組み合わせれば、いくつ引数を取る関数だろうとアプリカ
ティブ値に対応させられます。
とにかく、 fmap と同じように <*> も Monad 型クラスが提供する機能だけを

使って実装できることが分かります。 apという関数がありまして、本質的には
<*>なのですが、 Applicativeの代わりに Monad型クラス制約が付いているの
です。これが apの定義です。

ap :: (Monad m) => m (a -> b) -> m a -> m b
ap mf m = do

f <- mf
x <- m
return (f x)

mfは、結果が関数であるようなモナド値です。関数も、それに渡したい引数
も文脈の中にいるので、まず関数を文脈から取り出して fとし、次に値を取り出
して xとし、最後に関数を値に適用して、その結果を提示します。さっそく実例
に行きましょう。

ghci> Just (+3) <*> Just 4
Just 7
ghci> Just (+3) ‘ap‘ Just 4
Just 7
ghci> [(+1),(+2),(+3)] <*> [10,11]
[11,12,12,13,13,14]
ghci> [(+1),(+2),(+3)] ‘ap‘ [10,11]
[11,12,12,13,13,14]

これで、モナドは少なくともアプリカティブ以上に強い、ということも分か
りました。なぜなら、 Monad の関数だけを使って Applicative の関数を作れ
るからです。実は、型がモナドであると分かったとき、 Monad のインスタンス
を書き上げてしまってから、単に「 pureは returnで <*>は apだ」と書いて
Applicative のインスタンスにすることがよくあります。同じように、何かが

oyaji (20170810-501DAE64)

346 第 14章 もうちょっとだけモナド

Monadインスタンスになっていたら、そいつを Functorインスタンスにするに
は、ただ「 fmapは liftMだ」と言うだけです。

liftA2は、関数を 2つのアプリカティブ値に適用するときに便利な関数です。

liftA2 :: (Applicative f) => (a -> b -> c) -> f a -> f b -> f c
liftA2 f x y = f <$> x <*> y

liftM2 関数は型クラス制約が Monad になっているだけで同じものです。ほ
かにも liftM3、 liftM4、 liftM5などの関数があります。
これまで、モナドの威力は少なくともアプリカティブやファンクター以上であ
ること、そして、すべてのモナドはファンクターでもありアプリカティブファン
クターであるにもかかわらず、 Functorや Applicativeのインスタンスになっ
ているとは限らないということを見てきました。また、ファンクターやアプリカ
ティブファンクターが使う関数と等価なモナド版の関数を見ました。

join 関数
ちょっと考えてみてください。あるモナド値の結果がまたモナド値だとした

ら（モナドが入れ子になっていたら）、それを平らにして単一のモナド値にでき
るでしょうか？ 例えば、 Just (Just 9)という値があったら、それを Just 9

に変えられるでしょうか？ 実は、任意の入れ子になったモナドは平らにできる
んです。そして実は、これはモナド特有の性質なのです。このために、 joinと
いう関数が用意されています。 joinの型はこうです。

join :: (Monad m) => m (m a) -> m a

ほう、 joinはモナド値が入ったモナド値を取って、ただのモナド値をくれる
関数のようですね。いわば、モナドを平らにしてくれるわけです。 Maybe 値に
対して使ってみた結果はこうです。

ghci> join (Just (Just 9))
Just 9
ghci> join (Just Nothing)
Nothing
ghci> join Nothing
Nothing

1行目は、成功する計算の結果として成功する計算を保持しています。この 2
つを join すると、単に大きな 1 つの成功する計算になります。2 行目は Just

値の結果として Nothing を返しています。これまでも、複数の Maybe 値を結
合したくなったときは、その手段が <*>であれ >>=であれ、すべての入力値が
Justでなければ結果は Justになりませんでした。過程のどこかが失敗したら、

oyaji (20170810-501DAE64)

14.5 便利なモナディック関数特集 347

計算結果は失敗になります。ここでも同じです。3行目では最初っから失敗して
いるものを平らにしようとしていますが、これも同じく失敗になります。
リストを平らにする操作は、かなり直感的です。

ghci> join [[1,2,3],[4,5,6]]
[1,2,3,4,5,6]

見てのとおり、リストの joinはただの concatです。 Writer値の結果を返
す Writer値を平らにするには、モノイド値を mappendする必要があります。

ghci> runWriter $ join (Writer (Writer (1, "aaa"), "bbb"))
(1,"bbbaaa")

外側のモノイド値 "bbb"が最初にきて、それから "aaa"が追記されます。感
覚的に言っても、 Writer値の結果を調べるには、まずモノイド値をログに書き
出す必要があって、そうして初めて中身を見ることができるはずですね。

Eitherを平らにするのは、 Maybeを平らにするのとよく似ています。

ghci> join (Right (Right 9)) :: Either String Int
Right 9
ghci> join (Right (Left "error")) :: Either String Int
Left "error"
ghci> join (Left "error") :: Either String Int
Left "error"

状態付き計算を返す状態付き計算に joinを使うと、外側の状態付き計算を走
らせてから出てきた計算を走らせるような状態付き計算になります。実際に動
いているところを見てください。

ghci> runState (join (state $ \s -> (push 10, 1:2:s))) [0,0,0]
((),[10,1,2,0,0,0])

ここでラムダ式は、状態を取って 2 と 1 をスタックに積み、状態付き計算
push 10を結果として返す状態付き計算です。これ全体を joinで平らにして走
らすと、まず 2と 1がスタックに積まれ、それから push 10が実行されて、 10

がてっぺんに乗ります。
joinの実装はこうなっています。

join :: (Monad m) => m (m a) -> m a
join mm = do

m <- mm
m

mmの結果はモナド値ですから、 mmの結果を取り出すやいなや同じ流れに乗
せています。なにしろモナド値ですから。この仕掛けは、 m <- mmを呼び出し
たときにモナドの文脈の処理がなされることにあります。これが、 Maybe値を

oyaji (20170810-501DAE64)

348 第 14章 もうちょっとだけモナド

joinしたときに、内側と外側が両方 Justでなければ結果が Justにならなかっ
た理由です。例えば mmが Just (Just 8)なら、 joinはこうなるはずです。

joinedMaybes :: Maybe Int
joinedMaybes = do

m <- Just (Just 8)
m

たぶん joinに関して最も面白いのは、どん
なモナドでも、あるモナド値とある関数があっ
たとき、「モナド値を >>=で関数に食わせたも
の」と「その関数でモナド値を写し、出てきた
入れ子のモナドを joinで平らにしたもの」と
は常に結果が一致する！ という事実です。式
でいうと、m >>= fは常に join (fmap f m)

と同じということです。ちょっと考えてみれ
ば、これが実に理にかなっていることが分か
りますよ。
これまで >>= を使うときには、普通の値を
取るけどモナド値を返す関数にどうすればモ
ナド値を渡せるか、ということばかり考えて
きました。そんな関数でモナド値を写したら、
モナド値の中にモナド値が入ったものが出てくるでしょう。例えば、モナド値
Just 9と関数 \x -> Just (x+1)があるとします。この関数で Just 9を写し
たら結果は Just (Just 10)になってしまいます。

m >>= f が常に join (fmap f m) と等しい、という事実は、ある種の型の
Monadインスタンスを自作するときにとても便利です。これは、入れ子になった
モナド値を平らにする方法を導くほうが、 >>= の実装を導くより簡単なことが
多いからです。
もう 1つの興味深い事実は、 joinはファンクターやアプリカティブファンク

ターが提供する関数だけでは決して実装できない、ということです。このことか
ら、モナドはファンクターやアプリカティブと同等の強さを持つにとどまらず、
より強い力を持っていると結論付けられます。モナドには、ファンクターやアプ
リカティブよりも多くのことができるからです。

oyaji (20170810-501DAE64)

14.5 便利なモナディック関数特集 349

filterM
filter 関数は Haskell プログラミングの米といっても過言ではないでしょ

う（ mapが塩です）。 filterは、述語とフィルタ対象のリストを取り、述語を
満たす要素だけを残してくれます。 filterの型はこうです。

filter :: (a -> Bool) -> [a] -> [a]

述語とは、リストの要素を 1つとって Bool値を返す関数です。では、述語が
返す Boolがモナド値だったらどうしましょう？ 文脈がくっついてきたらどうし
ましょう？ 例えば、述語が生み出した Trueや Falseに、いちいち ["Accepted

 the number 5"] とか ["3 is too small"] といったモノイド値が付いてい
たら？ そういう場合、結果のリストにも、それまでに生まれたログが全部付い
てきてほしいものです。このように、述語が返した Boolに文脈が付いてくるの
なら、結果のリストにも適切な文脈が付いていることが期待されるわけです。そ
うでなければ、せっかくそれぞれの Boolに付いてきた文脈が失われることにな
ります。

Control.Monadモジュールの filterMこそ、まさにそのための関数です！

filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]

述語は Boolを結果とするモナド値を返していますが、返ってくるモナド値に
は、失敗の可能性から非決定性計算まで、どんな文脈が付いているか分かりませ
ん！ それでも最終結果に文脈がちゃんと反映されることを保証するために、結
果もまたモナド値になっています。
リストを取って 4 より小さい要素だけを残す関数を作りましょう。まずは普
通の filter 関数からです。

ghci> filter (\x -> x < 4) [9,1,5,2,10,3]
[1,2,3]

これは簡単ですね。では、 Trueか Falseかを返すだけじゃなくて、何をした
かのログも残すような述語を作ってみましょう。もちろん Writerモナドを使い
ます。

keepSmall :: Int -> Writer [String] Bool
keepSmall x

| x < 4 = do
tell ["Keeping " ++ show x]
return True

| otherwise = do
tell [show x ++ " is too large, throwing it away"]
return False

oyaji (20170810-501DAE64)

350 第 14章 もうちょっとだけモナド

ただの Bool の代わりに、この関数は Writer [String] Bool を返していま
す。いわばモナディック述語です！ かっこいいじゃないですか？ もし引数が 4

より小さければ、「とっておくよ」と報告した上で return Trueします。
では、この述語とリストを filterMに与えてみましょう。この述語は Writer

値を返すので、結果のリストも Writer値になります。

ghci> fst $ runWriter $ filterM keepSmall [9,1,5,2,10,3]
[1,2,3]

Writer値の結果を見る限り、すべてうまくいっているようですね。では、ロ
グのほうを表示して、何が起こったのか見てみましょう。

ghci> mapM_ putStrLn $ snd $ runWriter $ filterM keepSmall [9,1,5,2,10,3]
9 is too large, throwing it away
Keeping 1
5 is too large, throwing it away
Keeping 2
10 is too large, throwing it away
Keeping 3

このとおり、モナディック述語を filterMに与えるだけで、使ったモナドの
文脈を活用しながらリストをフィルタできるのです。
ここで、Haskellの超かっこいい技を紹介しましょう。 filterMを使って、あ
るリストの冪集合を作るという技です（リストを集合とみなすことにします）。
ある集合の冪集合とは、その集合の部分集合をすべて含んだ集合です。例えば
[1,2,3]という集合があったら、その冪集合の要素は以下の集合たちです。

[1,2,3]
[1,2]
[1,3]
[1]
[2,3]
[2]
[3]
[]

言い換えれば、ある集合の冪集合を作るというのは、その集合の各要素を残す
か捨てるか、そのすべての場合を尽くすのと同じです。例えば、 [2,3]はもと
の集合から 1だけを除いた集合ですし、 [1,2]は同じく 3を除いたものです。
あるリストの冪集合を計算する関数を作るには、非決定性計算に頼るのがよい
でしょう。リスト [1,2,3]を取って、まずは先頭要素 1をつくづく眺め、自ら
に問います。「これを残すべきか、除くべきか。それが問題だ。」 ええっと、両
方やりたいんですけど。そこで非決定性計算を使い、リストの各要素に対して
残すと除くの両方の答を返す述語を作ってリストをフィルタしちゃいましょう。
これが俺たちの powerset関数だ！

oyaji (20170810-501DAE64)

14.5 便利なモナディック関数特集 351

powerset :: [a] -> [[a]]
powerset xs = filterM (\x -> [True, False]) xs

えっ、これだけ？ ええ、そうなんです。どんな要素がきても平等に、残すか
落とすか両方のチャンスを与えます。こうして非決定性を使うと、結果のリスト
も非決定的値、つまりリストのリストになります。では、動かしてみましょう。

ghci> powerset [1,2,3]
[[1,2,3],[1,2],[1,3],[1],[2,3],[2],[3],[]]

これはちょっと考えないと理解できないかも。「非決定な値としてのリストは、
何になったらいいか分からないので同時にそのすべてになろうとしている」と思
えば、非決定性計算という概念が少し理解しやすくなるかもしれません。

foldM
foldlのモナド版が foldMです。第 5章で畳み込みをやったのを覚えていま

すか？ foldlは、2引数関数とアキュムレータの初期値、畳み込みたいリスト
を引数に取り、2引数関数を使って左から順番に畳み込んで 1つの値にしてくれ
る関数でした。 foldMは同じことをしますが、ただしモナド値を返す 2引数関
数を取り、それを使ってリストを畳み込みます。ということは、 foldMが返す
値がモナディックだったとしても驚きませんよね。 foldlの型は、こうです。

foldl :: (a -> b -> a) -> a -> [b] -> a

一方、 foldMの型はこうです。

foldM :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m a

2引数関数の返す値がモナディックになっているので、畳み込み全体の結果も
モナディックになってます。整数のリストの和を畳み込みを使って求めてみま
しょう。

ghci> foldl (\acc x -> acc + x) 0 [2,8,3,1]
14

アキュムレータの初期値は 0 です。これに 2 が足され、アキュムレータは 2

になります。続いて 8 が足され、アキュムレータは 10 になります。以下同様。
こうしてリストの最後まで辿り着いたときのアキュムレータの値が答です。
では、整数のリストを加算したいが、リストのいずれかの要素が 9 より大き

ければ計算全体を直ちに失敗させたい、という問題だったらどうでしょう？ 対
象が 9 より大きいかどうかを 2 引数関数に調べさせるのが素直でしょう。もし
そうなら関数は失敗します。そうでなければ、関数は楽しげに仕事を続けます。
このように失敗の可能性を追加したいのですから、2引数関数は普通のアキュム

oyaji (20170810-501DAE64)

352 第 14章 もうちょっとだけモナド

レータじゃなくて「 Maybe アキュムレータ」を返すようにしましょう。これが
その 2引数関数です。

binSmalls :: Int -> Int -> Maybe Int
binSmalls acc x

| x > 9 = Nothing
| otherwise = Just (acc + x)

このように 2引数関数をモナディックにしたのですから、普通の foldlと一
緒には使えなくなってしまいました。代わりに foldM を使う必要があります。
それゆけ！

ghci> foldM binSmalls 0 [2,8,3,1]
Just 14
ghci> foldM binSmalls 0 [2,11,3,1]
Nothing

素晴らしい！ 2つ目の例では、リストに 1つだけ、 9より大きい数が入って
いたので、計算全体が Nothingになっています。 Writerを返す 2引数関数で
畳み込みをするというのもすごいですよ。畳み込みが進行している間、起こった
ことをすべてログにとっておけますからね。

14.6 安全な逆ポーランド記法電卓を作ろう
第 10章で逆ポーランド記法（RPN）の電卓

を実装せよという問題を解いたときには、こ
の電卓は文法的に正しい入力が与えられる限
り正しく動くよ、という注意書きがありまし
た。ところが、何か少しでも間違うとプログ
ラム全体が落ちてしまうのでした。しかし、
既存のコードをモナディックにする方法が分
かった今、 Maybeモナドを使って、ぜひとも
僕らの RPN 電卓にエラー処理機能を付けよ
うじゃないですか！
さて、僕らの RPN 電卓の実装は、 "1

 3 + 2 *" みたいな文字列を引数に取り、
["1","3","+","2","*"] のような単語に分
解してました。それから、数をスタックに積んだりスタックの上から数を取って
足し算やら割り算やらを行う 2引数関数を使って、空のスタックから始めてリス
トの内容を畳み込んだのでした。
これが関数の本体でした。

oyaji (20170810-501DAE64)

14.6 安全な逆ポーランド記法電卓を作ろう 353

import Data.List

solveRPN :: String -> Double
solveRPN = head . foldl foldingFunction [] . words

数式を文字列のリストにしてから、専用の関数で畳み込みます。それから、ス
タックにただ 1つ数が残っていることを期待して、それを答として返すという実
装になっていました。これがそのとき使った畳み込み関数です。

foldingFunction :: [Double] -> String -> [Double]
foldingFunction (x:y:ys) "*" = (y * x):ys
foldingFunction (x:y:ys) "+" = (y + x):ys
foldingFunction (x:y:ys) "-" = (y - x):ys
foldingFunction xs numberString = read numberString:xs

この畳み込み関数のアキュムレータは Double値のリストとして表現されたス
タックです。この畳み込み関数が RPN式を走査していくときは、もし現在のア
イテムが演算子なら 2つのアイテムをスタックのてっぺんから取り出し、演算を
施し、結果をスタックに戻します。もし現在のアイテムが実数を表す文字列なら
文字列を実際の数に変換し、古いスタックとほとんど同じだけどその数がてっぺ
んに積まれている新しいスタックを返します。
まず、畳み込み関数に優雅に失敗（graceful failure）する能力を与えましょ
う。型は、このように変わるはずです。

foldingFunction :: [Double] -> String -> Maybe [Double]

つまり、新しいスタックを Justにくるんで返すか、失敗した場合は Nothing

を返すわけです。
reads関数は readに似ていますが、読み取りに成功したときは単一要素リス

トを返します。もし読み込みに失敗した場合は空リストを返します。しかも、読
み取れた値を返すばかりでなく、消費しきれなかった文字列も返します。今回
は、入力文字列を全部読み込めなかった場合も失敗とみなすことにしましょう。
そして、 readMaybeという便利な関数を作りましょう。こうです。

readMaybe :: (Read a) => String -> Maybe a
readMaybe st = case reads st of [(x, "")] -> Just x

_ -> Nothing

試してみましょう。

ghci> readMaybe "1" :: Maybe Int
Just 1
ghci> readMaybe "GOTO HELL" :: Maybe Int
Nothing

oyaji (20170810-501DAE64)

354 第 14章 もうちょっとだけモナド

オッケー、動いているようです。じゃあ、畳み込み関数のほうも失敗する可能
性のあるモナディック関数にしてみましょう。

foldingFunction :: [Double] -> String -> Maybe [Double]
foldingFunction (x:y:ys) "*" = return ((y * x):ys)
foldingFunction (x:y:ys) "+" = return ((y + x):ys)
foldingFunction (x:y:ys) "-" = return ((y - x):ys)
foldingFunction xs numberString = liftM (:xs) (readMaybe numberString)

最初の 3つのパターンはおおむね昔のものと同じで、ただし新しいスタックは
Justに包んで返しています（ここでは returnを使って包んでいますが、Justと
書いてもよいですよ）。最後のパターンでは、readMaybe numberStringを使っ
た後、(:xs)で写しています。例えば、スタック xsが [1.0,2.0]で、readMaybe
 numberStringの結果が Just 3.0だったら、結果は Just [3.0,1.0,2.0]に
なるわけです。もし readMaybe numberStringの結果が Nothingだったら、全
体の結果も Nothingになります。
畳み込み関数を単体で試してみましょう。

ghci> foldingFunction [3,2] "*"
Just [6.0]

ghci> foldingFunction [3,2] "-"
Just [-1.0]
ghci> foldingFunction [] "*"
Nothing
ghci> foldingFunction [] "1"
Just [1.0]
ghci> foldingFunction [] "1 wawawawa"
Nothing

どうやらちゃんと動いているようですね！ これでいよいよ改良版 solveRPN

が書けますよ。皆さん、ご覧あれ！

import Data.List

solveRPN :: String -> Maybe Double
solveRPN st = do

[result] <- foldM foldingFunction [] (words st)
return result

まずは文字列を取って単語のリストに分けるところまでは以前のバージョン
と同じです。次に、空のスタックから畳み込みを始めますが、 foldl の代わり
に foldMを使っています。 foldMした結果は Maybe値で、その中身にはスタッ
クの最終状態がリストとして入っています。そしてそのリストは単一要素のは
ずです。ここで、 do記法の中でその中身を取り出し、 resultという名前をつ
けています。もし foldM が Nothing を返していたら、全体が Nothing になっ
てくれるはずです。それが Maybeモナドの機能ですから。あと、 do記法の中で

oyaji (20170810-501DAE64)

14.7 モナディック関数の合成 355

さりげなくパターンマッチを使ったのに気づきました？ リストにもし 2つ以上
の要素が入っていたり空だったりしたら、パターンマッチが失敗して、やっぱり
Nothingが発生するはずです。最後の行では、 return resultを使って、RPN
電卓の計算結果を Maybe値として提示しています。
じゃあ、行ってみよう！

ghci> solveRPN "1 2 * 4 +"
Just 6.0
ghci> solveRPN "1 2 * 4 + 5 *"
Just 30.0
ghci> solveRPN "1 2 * 4"
Nothing
ghci> solveRPN "1 8 wharglbllargh"
Nothing

3 例目が失敗しているのは、最終状態のスタックが単一要素でないため、 do

式の中のパターンマッチが失敗しているからです。4例目の失敗は、 readMaybe

が Nothingを返しているからです。

14.7 モナディック関数の合成
第 13 章でモナド則を紹介したとき、 <=< 関数は関数合成によく似ているけ

ど、普通の関数 a -> bではなくて、 a -> m bみたいなモナディック関数に作
用するのだよと言いました。例を挙げます。

ghci> let f = (+1) . (*100)
ghci> f 4
401
ghci> let g = (\x -> return (x+1)) <=< (\x -> return (x*100))
ghci> Just 4 >>= g
Just 401

この例では、まず普通の関数を 2 つ合成し、できた関数を 4 に適用していま
す。次に、モナディック関数を 2つ合成し、できた関数に >>=を使って Just 4

を食わせています。
複数の関数をリストに入れて持っているとき、そのすべてを合成して 1つの巨
大な関数を作るには、 idをアキュムレータ、 .を 2引数関数として畳み込めば
よいでしょう。例えばこんなふうに。

ghci> let f = foldr (.) id [(+8),(*100),(+1)]
ghci> f 1
208

関数 fは、引数にまず 1を足し、続いて 100倍し、最後に 8を足す関数です。

oyaji (20170810-501DAE64)

356 第 14章 もうちょっとだけモナド

モナディック関数も同じように合成できますが、普通の関数合成の代わりに
<=<を、 idの代わりに returnを使えばよいですね。 foldrを foldMとかに変
えたりする必要はありません。だって関数 <=< が、関数合成がモナド風に行わ
れることを保証してくれますから。
第 13章で、最初にリストモナドを導入したときは、ナイトの駒がチェス盤上

のある位置から別の位置までちょうど 3 手で移動できるかどうかを判定するの
に使ったのでした。あのときは、 moveKnightという、ナイトの現在位置を取っ
て可能な手のリストを返す関数を作りました。そして 3 手後にどこにいられる
かを知るために、こんな関数を作ったのでした。

in3 start = return start >>= moveKnight >>= moveKnight >>= moveKnight

それから、ナイトが startから endまで 3手で行けるか試しました。

canReachIn3 :: KnightPos -> KnightPos -> Bool
canReachIn3 start end = end ‘elem‘ in3 start

モナディック関数合成を使えば、 in3 みたいな関数を書けますし、しかも
3 手後の位置とかじゃなくて任意の手数に対応できます。 in3 をよく見ると、
moveKnight を 3 回使っていますが、どれも直前のナイトの位置を >>= で受け
取っているのが分かります。じゃあ、もっと一般化してみましょう。こうです。

import Data.List

inMany :: Int -> KnightPos -> [KnightPos]
inMany x start = return start >>= foldr (<=<)

return (replicate x moveKnight)

まず、 replicateを使って関数 moveKnightのコピーが x個入ったリストを
作ります。続いて、そのすべてをモナディックに合成して 1 つにすれば、初期
位置を取ってナイトを非決定的に x 手動かす関数が出来上がります。それから
初期位置の入った単一要素リストを return で作って、さっきの関数に渡せば
完成。
となると、 canReachIn3のほうも一般化できそうですね。

canReachIn :: Int -> KnightPos -> KnightPos -> Bool
canReachIn x start end = end ‘elem‘ inMany x start

14.8 モナドを作る
この節では、型が生まれてモナドであると確認され、適切な Monad インスタ

ンスが与えられるまでの過程を、例題を通して学ぼうと思います。普通、モナド
は作りたいと思って作るものではありません。むしろ、とある問題のある側面を

oyaji (20170810-501DAE64)

14.8 モナドを作る 357

モデル化した型を作り、後からその型が文脈付きの値を表現していてモナドのよ
うに振る舞うと分かった場合に、 Monadインスタンスを与える場合が多いです。
これまでにも見てきたように、リストは非決定な値を表現しています。例えば

[3,5,9] のようなリストは、どの値を取るか決めかねている非決定的整数であ
ると解釈できます。 >>= を使ってリストを関数に食わせたら、リストからあら
ゆる可能な選択肢が取り出され、それぞれに関数が適用されて、結果がまたもリ
ストとして提示されるわけです。
リスト [3,5,9]を、整数 3、 5、 9が同時に存在している状態だと思って眺

めていると、あれ、でもそれぞれの数の存在確率の情報がなくね？ と気づきま
せんか。 [3,5,9]のような非決定的値を表現したいのだけど、さらに 3である
確率は 50パーセント、 5と 9はそれぞれ 25パーセントである、ということを
表したくなったらどうしましょう？ よし、やってみましょう！
リストの要素のそれぞれが、もう 1つの値を伴っているとしましょう。その要
素が実現する確率です。その値をこう表現するのはどうでしょう。

[(3,0.5),(5,0.25),(9,0.25)]

数学では、確率は普通パーセントじゃなくて、0 から 1 までの実数で表しま
す。確率が 0 というのは絶対ありえないということで、確率が 1 というのはも
う確実に起こるということです。確率を浮動小数で表してたら、すぐに精度が落
ちてきて困ったことになるでしょう。ところが Haskell には分数のためのデー
タ型があります。その名は Rationalで、 Data.Ratioモジュールに入っていま
す。 Rational型の値を作るには、分数のように書くだけです。分子と分母は %

という記号で区切ります。例えば、こんな感じです。

ghci> 1%4
1 % 4
ghci> 1%2 + 1%2
1 % 1
ghci> 1%3 + 5%4
19 % 12

oyaji (20170810-501DAE64)

358 第 14章 もうちょっとだけモナド

最初の例は四分の一（ 1
4）です。2例目では、半分を 2つ足して 1を作ってい

ます。3例目は 1
3 + 5

4 = 19
12 という足し算です。もう浮動小数なんて使うのはや

めて、確率は Rationalで表すことにしましょう。

ghci> [(3,1%2),(5,1%4),(9,1%4)]
[(3,1 % 2),(5,1 % 4),(9,1 % 4)]

オッケー、これで 3が出る確率は 1
2 で、 5と 9が出る確率はそれぞれ 1

4 であ
る、ということがきれいに表現できました。
さて、これはリストに対してさらに文脈を付加したものなので、こいつもきっ

と何らかの文脈付き値を表現しているのでしょう。でも先に進む前に、これを
newtypeで包んでおきませんか？ 何だか、これを何かのインスタンスにするよ
うな予感がするんです。

import Data.Ratio

newtype Prob a = Prob { getProb :: [(a, Rational)] } deriving Show

これってファンクターでしょうか？ ええ、リストはファンクターですから、
リストに何かを足したものである Probもたぶんファンクターでしょう。関数で
リストを写すときは、リストの各要素に関数を適用したのでした。ここでも、各
要素に関数を適用するのですが、確率はそのままにしておきましょう。では、イ
ンスタンスにしますよ。

instance Functor Prob where
fmap f (Prob xs) = Prob $ map (\(x, p) -> (f x, p)) xs

パターンマッチを使って newtypeから中身を取り出し、関数 fを値に適用し
た上で、確率はそのままに、再度 Probで包みます。ちゃんと動くでしょうか？

ghci> fmap negate (Prob [(3,1%2),(5,1%4),(9,1%4)])
Prob {getProb = [(-3,1 % 2),(-5,1 % 4),(-9,1 % 4)]}

確率の総和は常に 1であることに注意しましょう。あるリストが、起こり得る
場合をすべて尽くしているならば、その確率の和が 1以外の何かになるというの
は、まったく意味が通りません。例えば、投げると 75パーセントの確率で裏が
出て、50パーセントの確率で表が出るコインというのは、ここではない、どこ
か不思議な宇宙でしかありえないコインです。
では、皆さんお待ちかねの大問題です。これってモナドでしょうか？ リスト
がモナドだったのだから、これもモナドであってほしい気がしますよね。まず、
return について考えましょう。リストの return はどうでしたか？ 値を取っ
て、単一要素リストに入れる関数でしたね。では Probなら？ えっと、 return

はデフォルトの、最小限の文脈を持ってこないといけないのだから、きっと Prob

oyaji (20170810-501DAE64)

14.8 モナドを作る 359

の returnも単一要素リストを作るのでしょう。確率のほうはどうしましょう？
return xは、常に xを結果として提示するモナド値を作る関数でしたから、確
率が 0だったりしたら変ですよね。常にその値を示す、というのなら 1に決まっ
てます！

>>= のほうは？ これはちょっと難しいですよ。ここで、 m >>= f は常に
join (fmap f m) と等価であることを使い、どうすれば確率リストの確率リス
トを平らにできるか考えましょう。例えば、 'a'か 'b'のいずれかが起こる確
率はぴったり 25 パーセントであるとしましょう。そして 'a' と 'b' は同様に
確からしいとします。さらに 'c'か 'd'のいずれかが起こる確率はきっかり 75
パーセントであるとしましょう。そして 'c'と 'd'もまた、同様に確からしい
としましょう。これが、このシナリオを表した絵です。

では、これらの文字が出る確率は、それぞれいくらでしょう？ これらの事象
を 4つの長方形で表したとしたら、それらの確率はいくらになるでしょう？ 確
率を計算するには、それぞれの事象に寄与する確率をすべて掛け合わせればよい
のです。 'a'が起こる確率は 1

8 で、 'b'もそうです。なぜなら 1
4 に

1
2 を掛ける

と 1
8 になるからです。 'c' が起こる確率は 3

8 です。だって
3
4 × 1

2 は
3
8 ですか

ら。 'd'の確率も 3
8 です。これらの確率を全部足すと、確かに 1に戻りますね。

この状況を確率リストで表すと、こうなります。

thisSituation :: Prob (Prob Char)
thisSituation = Prob

[(Prob [('a',1%2),('b',1%2)], 1%4)
,(Prob [('c',1%2),('d',1%2)], 3%4)
]

おや、こいつの型は Prob (Prob Char) ですね。では、入れ子になった確率
リストを平らにする方法が分かった今、あとはどうやってコードに落とすかの問
題です。そうすれば >>=は単に join (fmap f m)と書けて、モナドの一丁上が
りです！ この関数を flattenと名づけましょう。 joinという名前はもう使わ
れてますからね。実装を以下に示します。

flatten :: Prob (Prob a) -> Prob a
flatten (Prob xs) = Prob $ concat $ map multAll xs

where multAll (Prob innerxs, p) = map (\(x, r) -> (x, p*r)) innerxs

oyaji (20170810-501DAE64)

360 第 14章 もうちょっとだけモナド

関数 multAllは、確率リストとある確率 pのタプルを取って、リストの中の
すべての確率を p 倍して、事象と確率の組のリストを返す関数です。 flatten

は、 multAllを入れ子確率リストの各要素に適用してまわり、得られた入れ子
リストを最後に（リストとして）平らにします。
これで必要なものはすべて揃いました。今こそ Monadインスタンスを書くと

きです！

instance Monad Prob where
return x = Prob [(x,1%1)]
m >>= f = flatten (fmap f m)
fail _ = Prob []

面倒な仕事はすでに済ませてあるので、インスタンス
宣言自体はとてもシンプルです。ここでは fail関数も追
加されています。これはリストの fail関数と同じもので
す。これにより、 do記法の中でパターンマッチに失敗す
ると、その失敗は確率リストの文脈の中で処理されます。
できたばかりのモナドが、きちんとモナド則を満たして
いるかどうか試すことも、とても重要です。

1. モナド第一法則は、 return x >>= fと f xは等価であるべし、という
ものでした。厳密な証明はちょっと長くなるので省きますが、まずある
値を returnでデフォルト文脈に入れ、ある関数を fmapし、それから結
果の確率リストを平らにしたとしても、関数が生み出すすべての確率に
returnが作った 1%1が掛かるだけなので、文脈に影響はないことが分か
ると思います。

2. 第二法則は、 m >>= returnは m と等価である、と言っています。この
例の場合、第一法則の場合のような考察をすれば、m >>= returnが mと
等しいことは明らかだと思います。

3. 第三法則は、 f <=< (g <=< h)と (f <=< g) <=< hが等価であれ、と
言っています。これもまた確かに成り立っています。なぜなら確率モナド
の基礎となるリストモナドは第三法則を満たしており、かつ、掛け算は結
合法則を満たすからです。 1%2 * (1%3 * 1%5)は (1%2 * 1%3) * 1%5

と等しいですよね。

こうしてモナドが手に入ったからには何ができるでしょうか？ もちろん、確
率的計算ができるようになったのです。確率的な事象を文脈付きの値として扱
い、すべての要素の確率を反映して、確率モナドが最終結果の確率をきちんと計
算してくれるのです。

oyaji (20170810-501DAE64)

14.8 モナドを作る 361

さて、普通のコインが 2枚と、10回投げると 9回裏が出るよう細工されたコ
インが 1枚あるとしましょう。これらのコインを全部同時に投げて、全部裏が出
る確率っていくらでしょう？ まず、普通のコイン投げとイカサマコイン投げに
対応する確率値を作ってみましょう。

data Coin = Heads | Tails deriving (Show, Eq)

coin :: Prob Coin
coin = Prob [(Heads,1%2),(Tails,1%2)]

loadedCoin :: Prob Coin
loadedCoin = Prob [(Heads,1%10),(Tails,9%10)]

そしてこれがコイン投げです。

import Data.List (all)

flipThree :: Prob Bool
flipThree = do

a <- coin
b <- coin
c <- loadedCoin
return (all (==Tails) [a,b,c])

こいつを動かすと、イカサマコインが紛れ込んでいるとはいえ 3枚とも裏が出
る確率っていうのがいうほど大きくはないってことが分かります。

ghci> getProb flipThree
[(False,1 % 40),(False,9 % 40),(False,1 % 40),(False,9 % 40),
(False,1 % 40),(False,9 % 40),(False,1 % 40),(True,9 % 40)]

3枚とも裏が出る確率は 9
40 です。これは 25パーセントより少ないですね。3

枚のうちのどれかが表になり、結果が Falseになるパターンは 7通りあるんで
すが、どうやら僕らのモナドはこれらを統合する方法は知らないようです。まあ
でも、これは大した問題じゃありません。結果が一致する事象の確率をまとめる
処理を書くのはとても簡単です（から、読者への演習問題とさせていただこうと
思います）。
この節では、「リストが確率の情報も持っていたらどうなるだろう？」という
疑問から出発して、型を作り、モナドを見切り、モナドのインスタンスを作って、
何がしかの計算ができるようになりました。楽しんでいただけましたか？ ここ
まできたあなたは、モナドについて、モナドは何のためにあるのかについて、か
なり理解が深まったのではないでしょうか？

oyaji (20170810-501DAE64)

oyaji (20170810-501DAE64)

第15章
Zipper

Haskell の純粋性は数多くの恵みをもたらしますが、ある種の問題について
は、非純粋な言語では使わないような手段で解決する必要も生じます。

Haskellは参照透明性を持つので、同じ値を表している 2
つの式の間に区別はありません。ここで例えば、要素が 5
ばっかりの木構造があり、そのどれか 1つの要素を 6に変え
たいとします。すると、木の中のどの 5を変更したいのか、
明確に表現する方法が必要になります。木の中における変
更点の位置を指定する必要があるのです。非純粋な言語で
は、該当の 5が存在するメモリ上の位置を指定して書き換え
れば済んだでしょう。ところが Haskell では、どの 5 も他
の 5と同じで、純粋な「5という値」でしかなく、メモリ上
の位置をもとにした識別は不可能です。
そもそも、Haskell では何かを変えることはできません。

「木を更新する」とは、実際には木を取ってそれとそっくり
だけど少し異なっている木を返すことを意味します。

1つの手は、木のルート（根元）から変更したい要素まで
の経路を覚えておくことです。「この木を取って、まず左に、
次に右、また左に行って、そこの要素を変えてくれ」など。
これは確かにちゃんと動きはするんですが、効率が悪くなり
がちです。もし後で、さっき変更した要素の近くの要素を更新したくなっても、
木をもう一度ルートから辿り直さなくてはなりません！
この章では、いくつかのデータ構造に、そのデータ構造の一部分に注目するた

めの Zipper を備える方法を紹介します。Zipperはデータ構造の要素の更新を
簡単にし、データ構造を辿るという操作を効率的にしてくれるんです。いいです
ね！

363

oyaji (20170810-501DAE64)

364 第 15章 Zipper

15.1 歩こう
生物の授業で習ったように、木にはいろんな種類があります。これから使う木

の種を蒔きましょう。

data Tree a = Empty | Node a (Tree a) (Tree a) deriving (Show)

この木は、空であるか、1つの要素と 2つの部分木を持つノードであるかのい
ずれかである、として定義されています。では今から、そんな木の一例を、なん
と無料で読者にプレゼントしちゃいましょう。これです！

freeTree :: Tree Char
freeTree =

Node 'P'
(Node 'O'

(Node 'L'
(Node 'N' Empty Empty)
(Node 'T' Empty Empty)

)
(Node 'Y'

(Node 'S' Empty Empty)
(Node 'A' Empty Empty)

)
)
(Node 'L'

(Node 'W'
(Node 'C' Empty Empty)
(Node 'R' Empty Empty)

)
(Node 'A'

(Node 'A' Empty Empty)
(Node 'C' Empty Empty)

)
)

そして、この木を図にしたものが次ページのイラストです。
ほら、木の中の Wが見えますか？ あれを Pに変えたいな。どうすればできる

でしょう？ たぶん、1つの方法は、その要素に辿り着くまでパターンマッチを繰
り返すことです。まずは右に、次は左に。こうですね。

changeToP :: Tree Char -> Tree Char
changeToP (Node x l (Node y (Node _ m n) r)) =

Node x l (Node y (Node 'P' m n) r)

ウゲェー！ このコードは醜いどころではありません。わけがわからないよ。
一体全体何が起こっているのでしょう？ えええっと、まずルートの要素を xと
名づけ（これは freeTreeのルートにある 'P'に合致します）、その左部分木を
lとします。右部分木には、名前をつける代わりに、さらに深いパターンマッチ
を使います。こうしてパターンマッチを繰り返していって、やっと 'W' をルー

oyaji (20170810-501DAE64)

15.1 歩こう 365

トに持つ部分木に辿り着いたら、今度は集めた部品から木を再構成するわけです
が、このときもともとルートに 'W'があった部分だけは 'P'を使います。
なんつーか、もっとマシな方法ってないんでしょうか？ 例えば、この関数が

木と、方向のリストを引数に取るようにしたらどうでしょう？ 方向とは Lか R

のいずれかで、それぞれ左、右に対応し、方向指示に従って辿り着いた位置の値
を更新するという具合です。こんなふうに。

data Direction = L | R deriving (Show)
type Directions = [Direction]

changeToP :: Directions -> Tree Char -> Tree Char
changeToP (L:ds) (Node x l r) = Node x (changeToP ds l) r
changeToP (R:ds) (Node x l r) = Node x l (changeToP ds r)
changeToP [] (Node _ l r) = Node 'P' l r

方向リストの先頭要素が Lなら、元の木に似ているが、左部分木のどこかの要
素が 'P'に置き換わっている木を作って返します。このとき changeToPを再帰
的に呼び出すにあたって、方向リストの tail部分を渡します。もう左には行き
ましたからね。先頭要素が Rの場合も同様です。もし方向リストが空だったら、
目的の場所に到着したってことなので、元の木のルート要素を 'P' に置き換え
ただけの木を返します。
木全体を出力するのも大変ですから、方向リストを取って、目的地にある要素

を返す関数も作りましょう。

oyaji (20170810-501DAE64)

366 第 15章 Zipper

elemAt :: Directions -> Tree a -> a
elemAt (L:ds) (Node _ l _) = elemAt ds l
elemAt (R:ds) (Node _ _ r) = elemAt ds r
elemAt [] (Node x _ _) = x

この関数、よく見たら changeToPにそっくりです。違いといえば、経路に沿っ
て出会ったものを覚えておいて木を再構築するのではなく、目的物以外のすべて
を無視するようにできていることぐらいです。では、 'W'を 'P'に書き換えた
上で、書き換えがちゃんと動いているか確かめてみましょう。

ghci> let newTree = changeToP [R,L] freeTree
ghci> elemAt [R,L] newTree
'P'

動いてるっぽいですね。この 2つの関数では、方向リストが与えられた木の特
定の部分木、いわば注目点を指定する役割を果たしています。例えば [R] とい
う方向リストは、ルートの右側の部分木を表しています。空の方向リストは木全
体を表します。
この技はかっこいいと思いました？ でも、これだと効率が悪い場合があるん
です。特に要素の更新を何度もしたい場合は。もしも、とても巨大な木の末端の
ほうを長い長い方向リストで指定して、やっと書き換えたところに、また似たよ
うな位置の要素を書き換えたくなったら？ またはじめから辿り直しですよ？ 超
だるい！
次の節では、部分木に注目するためのもっと良い方法を探すことにします。あ
る部分木から近場の部分木へと効率的に切り替えられるような方法です。

背後に残った道しるべ
部分木に注目するのに、毎回ルートから辿

り直す必要のある方向リスト以外の手段を考
えたほうが良さそうです。ルートから左、右、
と進むときに、道しるべとなるパンくずを残
したらどうでしょう？ 左へ行ったときには
「さっきは左だった」、右へ行ったときには「あ
そこで右だった」と、往路の履歴を覚えておけ
ば、逆方向の移動が作れそうです。やってみ
ましょう！
パンくずを表現するのにも方向値（ L と R ）を使いましょう。ただし、

Directions と呼ぶ代わりに Breadcrumbs という名前にしましょう。木構造
を下るときにパンくず（Breadcrumbs）を残していくと、方向としては逆向き
になるので。

oyaji (20170810-501DAE64)

15.1 歩こう 367

type Breadcrumbs = [Direction]

これは、木とパンくずリストを受け取って、木を左部分木へと辿りながら L

をパンくずリストの先頭に追記する関数です。

goLeft :: (Tree a, Breadcrumbs) -> (Tree a, Breadcrumbs)
goLeft (Node _ l _, bs) = (l, L:bs)

ルート要素と右部分木は無視して、左部分木と、 Lが先頭に追加されたパンく
ずリストを返しています。
右に行く関数はこちら。

goRight :: (Tree a, Breadcrumbs) -> (Tree a, Breadcrumbs)
goRight (Node _ _ r, bs) = (r, R:bs)

左に行く関数と同じ仕組みです。
これらの関数を使って、例の freeTreeを右、続いて左に辿ってみましょう。

ghci> goLeft (goRight (freeTree, []))
(Node 'W' (Node 'C' Empty Empty) (Node 'R' Empty Empty),[L,R])

これで 'W' をルートに、 'C' を左部分
木のルートに、'R'を右部分木のルートに
持つ木が出てきました。パンくずリストは
[L,R]です。まず右に、次に左に行きまし
たからね。
木を辿る操作をもっときれいに書くため
に、第 13 章で定義した関数 -: を使いま
しょう。関数 -:の定義はこうでした。

x -: f = f x

これで関数を値に適用するとき、「値 -: 関数」と書けるようになります。例え
ば、goRight (freeTree, [])と書く代わりに、(freeTree, []) -: goRight
と書けます。この形式を使ってさっきの例を書き直すと、まず右、次に左に行っ
た、というのが分かりやすくなりますよ。

ghci> (freeTree, []) -: goRight -: goLeft
(Node 'W' (Node 'C' Empty Empty) (Node 'R' Empty Empty),[L,R])

来た道を戻る
木を逆方向に辿り直すにはどうすればよいのでしょう？ パンくずリストから

は、今の木が親の木の左部分木だったこと、そしてその親は、親の親の木の右部
分木だったことは分かります。が、それがすべてです。パンくずリストだけで

oyaji (20170810-501DAE64)

368 第 15章 Zipper

は、木構造を上向きに辿るための十分な情報がありません。1つひとつのパンく
ずの中に、木を辿った方向だけじゃなくて、木構造を戻るために必要なデータを
すべて蓄えておく必要があるようです。今回の場合、それは親の木のルート要素
および右部分木です。
一般的に言って、1つのパンくずには親ノードを構築するのに必要なすべての

データを蓄えておく必要があります。つまり、辿った方向だけじゃなく、辿る可
能性があった経路の情報も必要です。ところが、今注目している部分木の情報ま
で含んではいけません。なぜなら注目している部分木の情報はタプルの第一要
素に既出だからです。これまでパンくずに含まれていると情報が重複してしま
うでしょう。
情報が重複するのは避けたいです。なぜなら、注目している部分木に何らかの

変更が加わった場合、パンくずリストの中にある情報との間で一貫性が壊れてし
まうからです。注目点の中で少しでも変更があると、重複している情報は期限切
れで無効になります。しかも、もし木の要素数が多かったらメモリもバカ食いし
ちゃいますよね。
では、パンくずリストを改良し、これまで左右に移動するときに無視してきた

情報をすべて含むようにしましょう。 Directionに代わる新しいデータ型を作
ります。

data Crumb a = LeftCrumb a (Tree a)
| RightCrumb a (Tree a) deriving (Show)

今度は、ただの Lに代わって LeftCrumbというコンストラクタがあり、移動
元のノードに含まれていた要素と、辿らなかった右部分木をも持つようになって
います。また R に代わって RightCrumb があり、やはり移動元のノードに含ま
れていた要素と、辿らなかった左部分木を持っています。
この新しいパンくずリストなら、辿ってきた木を再構築できるだけの情報をす
べて含んでいます。もはやただのパンくずリストというより、分岐点に行きあた
るたびに残してきたフロッピーディスクのようなものです。辿った方向よりも
ずっと多くの情報を含んでいるわけですから。
新しいパンくずは、本質的には「穴」のついた木のノードのようなものです。
木を 1 階層辿るごとに、パンくずには出発点のノードの情報のうち「今注目す
ることを選んだ部分を除くすべての情報」が書き込まれます。あと、穴がどこに
あったのかも記録する必要がありますね。 LeftCrumbの場合では、左に移動し
たことは知っているので、穴は左部分木のところに空いているわけです。
型シノニム Breadcrumbsにもこの更新を反映させましょう。

type Breadcrumbs a = [Crumb a]

oyaji (20170810-501DAE64)

15.1 歩こう 369

続いて、goLeft関数と goRight関数も修正し、辿らなかった経路の情報を捨
てるのではなくパンくずリストに記録するようにしないといけませんね。まず、
これが goLeftです。

goLeft :: (Tree a, Breadcrumbs a) -> (Tree a, Breadcrumbs a)
goLeft (Node x l r, bs) = (l, LeftCrumb x r:bs)

さっきの goLeftととてもよく似ていますね。ただし、左に行ったことを記録
するとき、パンくずリストの先頭に L ではなく LeftCrumb を追加しています。
そして LeftCrumbには移動元のノードに入っていた要素 xと、選ばれなかった
右部分木の情報を載せています。
この関数では、引数にきた木が Emptyじゃないことを仮定している点に注意

が必要です。空の木には部分木がありませんから、空の木から左に行こうとした
らエラーが出ます。これは Nodeに対するパターンマッチが成功せず、 Emptyを
受理するパターンはないからです。

goRightも似たようなもんです。

goRight :: (Tree a, Breadcrumbs a) -> (Tree a, Breadcrumbs a)
goRight (Node x l r, bs) = (r, RightCrumb x l:bs)

さて、左や右に行くことなら、これまでも可能でした。今、さらに親ノードの
情報と辿らなかった経路の情報を揃えたことで、経路を戻る能力を手に入れたは
ずです。これが goUp関数です。

goUp :: (Tree a, Breadcrumbs a) -> (Tree a, Breadcrumbs a)
goUp (t, LeftCrumb x r:bs) = (Node x t r, bs)
goUp (t, RightCrumb x l:bs) = (Node x l t, bs)

木 t に注目している状態で、最
新の Crumb を調べます。それが
LeftCrumb であれば、現在の木で
ある tを左部分木に使い、 Nodeの
残りの部分は、パンくずからの右部
分木とルート要素の情報を使って埋
めます。そして、「履歴を戻る」操作
をするためにリストの先頭のパンく
ずを拾ってしまったわけですから、
新しいパンくずリストからは先頭要
素を除いておきます。
木のてっぺんにいる場合に、さらに上に戻ろうとしてこの関数を使うと、やっ

ぱりエラーになることに注意です。でも大丈夫。後で Maybe モナドを使って、
注目点を移動しようとしたときに起こり得る失敗を表現するようにしますから。

oyaji (20170810-501DAE64)

370 第 15章 Zipper

Tree aと Breadcrumbs aのペアは、元の木全体を復元するのに必要な情報
に加えて、ある部分木に注目した状態というのを表現しています。このスキーム
なら、木の中を上、左、右へと自由自在に移動できます。
あるデータ構造の注目点、および周辺の情報を含んでいるデータ構造は Zipper
と呼ばれます。注目点をデータ構造に沿って上下させる操作は、ズボンのジッ
パーを上下させる操作に似ているからです。というわけで、こんな型シノニムを
定義しておくといいんじゃないかな？！

type Zipper a = (Tree a, Breadcrumbs a)

僕としては、 Focus という名前のほうが好きです。データ構造の一部分に注
目しているってことをよく表す名前になりますからね。ですが、このような設計
を表す名前としては Zipperのほうが広く普及しているので、ここは大勢に従っ
ておきましょう。

注目している木を操る
さて、これで上下に動けるようになりましたから、ジッパーが注目している部

分木のルート要素を書き換える関数を作りましょう。

modify :: (a -> a) -> Zipper a -> Zipper a
modify f (Node x l r, bs) = (Node (f x) l r, bs)
modify f (Empty, bs) = (Empty, bs)

注目点がノードである場合、関数 fを使ってそのノードのルート要素を書き換
えます。もし注目点が空の木なら、そっとしておきます。これでどんな木でも、
好きなところへ辿っていき、要素を修正しつつも常に注目点を忘れず、いつでも
また上下に移動できるように保てます。例えば、「まず左へ行き、次に右へ行き、
ルート要素を 'P'で置き換えるという修正を施す」という操作なら、こう書ける
わけです。

ghci> let newFocus = ⇨
modify (_ -> 'P') (goRight (goLeft (freeTree, [])))

-:を使えば、もっと見やすくなりますよ。

ghci> let newFocus = ⇨
(freeTree, []) -: goLeft -: goRight -: modify (_ -> 'P')

望みとあらば、さらに 1 つ上へ行き、そこの要素を謎めいた 'X' に置き換え
ることもできます。

ghci> let newFocus2 = modify (_ -> 'X') (goUp newFocus)

もしくは -:を使ってこう書けます。

oyaji (20170810-501DAE64)

15.1 歩こう 371

ghci> let newFocus2 = newFocus -: goUp -: modify (_ -> 'X')

上への移動がここまで簡単になったのは、残してきたパンくずリストがデータ
構造のうちの現在注目していない点を構成しており、しかも「逆向きに」、いわ
ば裏返した靴下のようになっているからです。だからこそ上に移動するときに
も、ルートから延々と下へ辿り直す必要はなく、裏返った木の先頭要素を取って
きて、表向きに直し、現在の注目点に継ぎ足せばよいのです。
どのノードも 2 つの部分木を持ちますが、それは空かもしれません。ですか

ら、空の部分木に注目している場合、注目点を空でない部分木で置換すれば、木
を別の木の先端に継ぎ足す操作が作れます。そのためのコードもシンプルです。

attach :: Tree a -> Zipper a -> Zipper a
attach t (_, bs) = (t, bs)

木とジッパーを取って、注目点を与えられた木で置き換えた新しいジッパーを
返しています。こいつは、空の木を置換して木を伸ばすことだけじゃなく、既存
の部分木を置き換えるのにも使えますね。それでは、お馴染みの freeTreeの一
番左に新しい木を取り付けてみましょう。

ghci> let farLeft = ⇨
(freeTree, []) -: goLeft -: goLeft -: goLeft -: goLeft

ghci> let newFocus = farLeft -: attach (Node 'Z' Empty Empty)

これで、 newFocus は取り付けたばかりの新しい木に注目していて、木の残
りの部分は裏返しでパンくずリストに入っている状態が作れました。ここから
goUpで木のてっぺんまで戻ると、 freeTreeに対して左端に 'Z'が増えている
木が作れるはずです。

真っすぐ、てっぺんまで行って、新鮮でおいしい空気を吸おう！
今どこに注目しているかによらず、木のてっぺんまで移動する関数はすごく簡

単に作れます。こうです。

topMost :: Zipper a -> Zipper a
topMost (t, []) = (t, [])
topMost z = topMost (goUp z)

パンくずリストが空なら、すでにルートにいるということですから、現状の注
目点をそのまま返せばよいですね。そうでなければ、 goUpで親ノードに注目し
た上で、再帰的に topMostを使います。
これで、木の中を歩き回り、左に右に、また上に行ったり、道すがら modify

や attachを適用してまわったりできるようになりました。そうして修正が済ん
だら、 topMost を使ってルートまで上がり、これまで加えてきた変更を一望し
ましょう。

oyaji (20170810-501DAE64)

372 第 15章 Zipper

15.2 リストに注目する
ジッパーは、ほぼどんなデータ型に対しても作れるので、リストと部分リスト

に対して作れるといっても不思議ではないでしょう。なにしろ、リストだって木
のようなもんです。ただ、一般的な木構造は各ノードに要素（のない木もありま
すが）と複数の部分木を持たせたものであるのに対し、リストは各ノードに 1つ
の要素と 1 つの部分リストを持たせたものです。第 7 章で自作のリストを作っ
たときにも、そうやってデータ構造を定義しましたね。

data List a = Empty | Cons a (List a) deriving (Show, Read, Eq, Ord)

これを、先ほどの二分木の定義と比べる
と、まさに木は先頭要素（head）と先頭以外
の要素（tail）からなる「一分木」であると
察していただけるかと思います。
例えば、 [1,2,3] というリストは、

1:2:3:[]と書き直せます。こいつは、head
である 1 と、tail である 2:3:[] からなっ
ています。 2:3:[] にも head である 2 と、
tail である 3:[] があります。そして 3:[]

にとっては、 3が headで、tailは空リスト
[]です。
では、リストのジッパーを作ってみましょう。部分リストの間での注目点の移
動は前、後方向と呼ぶことにしましょう（木の場合は上、左、右が移動可能な方
向でしたね）。注目点は部分リストであり、それに加えて、前に進むたびにパン
くずリストを残していくことにしましょう。
さて、リストに関するパンくずには、1かけらあたりどんな情報を入れればよ
いでしょう？ 二分木を扱うパンくずのときは、親ノードのルート要素の情報に
加えて、選ばれなかった部分木全体の情報も持たせる必要がありました。それか
ら、左へ行ったのか右へ行ったのかも記録しておく必要がありました。要する
に、親ノードに含まれていた情報のうち、選択して注目することにした部分木に
含まれない情報はすべて保持しておく必要があったわけです。
リストは木よりも単純です。まず、左右どちらに分岐したかは記録する必要が
ありません。リストを深いほうに辿る選択肢は 1 つしかないからです。しかも
ノードの部分木も 1 つしかないので、選ばなかった経路を記録する必要もあり
ません。どうやら、親ノードの持っていた要素だけを記録すれば済みそうです。
リスト [3,4,5]があったときに、直前の要素は 2だったことさえ知っていれば、
その要素をリストの headに戻して [2,3,4,5]を復元できます。

oyaji (20170810-501DAE64)

15.2 リストに注目する 373

二分木のジッパーを作ったときは、パンくずを表す Crumbというデータ型を
作りましたが、リストにとって 1かけらのパンくずは単なる要素なので、わざわ
ざデータ型に包むまでもありません。

type ListZipper a = ([a], [a])

第一のリストは注目しているリストを表し、第二のリストはパンくずリストに
対応します。では、リストを前後に移動する関数を作りましょう。

goForward :: ListZipper a -> ListZipper a
goForward (x:xs, bs) = (xs, x:bs)

goBack :: ListZipper a -> ListZipper a
goBack (xs, b:bs) = (b:xs, bs)

リストを前に進むときは、現在のリストの tailを新しい注目点とし、headを
パンくずとして残します。リストを後ろに戻るときは、最新のパンくずを取り
出して、現在のリストの先頭にくっつけます。この 2 つの関数を動かしてみま
しょう。

ghci> let xs = [1,2,3,4]
ghci> goForward (xs, [])
([2,3,4],[1])
ghci> goForward ([2,3,4], [1])
([3,4],[2,1])
ghci> goForward ([3,4], [2,1])
([4],[3,2,1])
ghci> goBack ([4], [3,2,1])
([3,4],[2,1])

このように、リスト構造に対するパンくずリストというのは、元のリストを逆
順にしたものにほかなりません。注目しているリストから取り除いた要素は、パ
ンくずリストの先頭に継ぎ足されていきます。そうしておけば、パンくずリスト
の先頭から要素を取り出しては注目しているリストに継ぎ足すだけで、いとも簡
単にデータ構造を逆戻りできます。こうしてみると Zipperという名前の由来に
も納得がいきますね。ジッパーのスライダーが上下に動いているようすにほん
とそっくりです。
もしあなたが、テキストエディタを作ることになったら、今開いているファ
イルの各行を文字列のリストとして表現するのも 1 つの手です。そうしてジッ
パーを使えば、カーソルのある行を表現することができ、テキストの任意の箇所
に新しい行を挿入したり削除したりする操作も簡単に書けますよ。

oyaji (20170810-501DAE64)

374 第 15章 Zipper

15.3 超シンプルなファイルシステム
ジッパーを使ったデモとして、ごく単純化したファイルシステムを木で表現し

てみましょう。そのファイルシステムに対するジッパーを作り、本物のファイル
システムみたいにフォルダ間を移動できるようにしましょう。
よくある階層的なファイルシステムは、ファイルとフォルダからなります。

ファイルは名前のついたデータの塊です。フォルダはそれらファイルを整理す
るためのもので、複数のファイルやフォルダを含むことができます。今回の単純
な例では、ファイルシステム内のアイテムは次のいずれかであるとしましょう。s ファイル：名前がついていて、データが入っている。s フォルダ：名前がついていて、複数のファイルやフォルダをアイテムとし

て含む。

何が何だかよく分かるように、データ型と型シノニムを作りましょう。

type Name = String
type Data = String
data FSItem = File Name Data | Folder Name [FSItem] deriving (Show)

ファイルは 2つの文字列からなります。1つ目はファイル名で、2つ目が中身
のデータを表しています。フォルダは、フォルダ名を表す文字列と、中身のアイ
テムのリストからなります。中身リストが空だったら、そいつは空フォルダって
ことです。
いくつかのフォルダやサブフォルダが入っているフォルダの例です（実はこ
れ、僕のディスクの今の中身です）。

myDisk :: FSItem
myDisk =

Folder "root"
[File "goat_yelling_like_man.wmv" "baaaaaa"
, File "pope_time.avi" "god bless"
, Folder "pics"

[File "ape_throwing_up.jpg" "bleargh"
, File "watermelon_smash.gif" "smash!!"
, File "skull_man(scary).bmp" "Yikes!"
]

, File "dijon_poupon.doc" "best mustard"
, Folder "programs"

[File "fartwizard.exe" "10gotofart"
, File "owl_bandit.dmg" "mov eax, h00t"
, File "not_a_virus.exe" "really not a virus"
, Folder "source code"

[File "best_hs_prog.hs" "main = print (fix error)"
, File "random.hs" "main = print 4"
]

]
]

oyaji (20170810-501DAE64)

15.3 超シンプルなファイルシステム 375

このファイルシステムのジッパーを作ろうぜ！
これでファイルシステムはできたので、あ

とはジッパーさえあれば、ザッピングもズー
ムインも自由、ファイルの追加・編集・消去
も自在にできますね。二分木やリストでも
やったように、パンくずリストは、ここに
行く！ と決めたもの以外のすべての情報を
含む必要があります。1かけらのパンくずに
は、今注目している部分木以外のすべてを保
存するべきです。また、「穴」の位置も覚え
ておかないと、上に戻ったときに直前の注目
点を適切な位置に埋め戻すことができませ
んね。
今回の場合、パンくずはフォルダにそっくりなデータ構造になるはずです（た

だし、今選択されているフォルダは含まれてません）。「あれ、じゃあファイル
は？」と思いましたか？ えっと、ひとたびファイルに注目したら、ファイルシ
ステムをそれ以上深く辿ることはできません。ですから、「ファイルからきまし
た」というパンくずが残されることはないはずです。ファイルは、あたかも空の
木のような役割なのです。
例えば、 "root" フォルダに注目している状態から "dijon_poupon.doc" に

注目している状態に移るときは、どんなパンくずを残せばいいでしょうか？ え
えと、まず親フォルダの名前と、注目しているアイテムの前後にくるべき他のア
イテムたちですね。ですから、 Nameが 1つと、アイテムのリストが 2つ必要で
す。現在のアイテムの前にあったアイテムのリストと、後ろにあったアイテムの
リストを分けておくことで、戻るときに現在のアイテムをフォルダのどこに戻せ
ばいいか、ちゃんと分かります。そうやって穴の位置を記録するわけです。
これが僕らのファイルシステムのパンくずの型です。

data FSCrumb = FSCrumb Name [FSItem] [FSItem] deriving (Show)

そしてこれがジッパーです。

type FSZipper = (FSItem, [FSCrumb])

階層構造を上に戻るのはとても簡単です。最新のパンくずを取って、現在の注
目点とそのパンくずとから、こうやって新しい注目点を作ります。

fsUp :: FSZipper -> FSZipper
fsUp (item, FSCrumb name ls rs:bs) =

(Folder name (ls ++ [item] ++ rs), bs)

oyaji (20170810-501DAE64)

376 第 15章 Zipper

パンくずには、フォルダの名前、フォルダの中で注目点より前にあったアイテ
ムのリスト（その名は ls）、注目点より後ろにあったアイテムのリスト（その名
は rs）が全部入っていますから、上に戻るのは簡単です。
ではファイルシステムを奥に辿るのはどうでしょう？ 今 "root"にいるとし

て、ファイル "dijon_poupon.doc"に注目したいときは、後に残すパンくずに
はフォルダ名 "root"と、"dijon_poupon.doc"よりも前にあったアイテム、後
ろにあったアイテムのリストを残す必要があります。これが、アイテム名を引数
に取って、現在のフォルダの中にあるファイルまたはフォルダに注目点を移す関
数です。

import Data.List (break)

fsTo :: Name -> FSZipper -> FSZipper
fsTo name (Folder folderName items, bs) =

let (ls, item:rs) = break (nameIs name) items
in (item, FSCrumb folderName ls rs:bs)

nameIs :: Name -> FSItem -> Bool
nameIs name (Folder folderName _) = name == folderName
nameIs name (File fileName _) = name == fileName

fsToは、Nameと FSZipperを引数に取り、その名前を持つアイテムに注目し
た新しい FSZipperを返します。引数に与えられた名前を持つアイテムは、フォ
ルダ内に存在しないといけません。この関数は、ファイルシステム全体を検索し
てくれるわけではありません。カレントフォルダ内だけを探します。

まず breakを使って、今探しているアイテ
ムよりも前にあるものと後にあるものとにア
イテムのリストを分けます。 breakは、述語
とリストを引数に取り、リストのペアを返す
関数です。ペアの第一要素はすべて、述語が
False を返すような要素です。その後、述語
が True を返すようなアイテムが 1 つでも見
つかればそいつを含め、残りのアイテムは全
部第二要素に入ります。ここでは述語として、
名前とファイルシステムアイテムを引数に取

り、名前が一致していれば Trueを返す補助関数 nameIsを作って使っています。
こうして、探していたアイテムより前にあるアイテム ls 、探していたもの

item 、探していたものより後にいたもの rs が分類できました。この 3 つが
breakから取れたなら、あとは見つかったアイテムを注目点として提示し、パン
くずに全部のデータを詰めれば完成です！

oyaji (20170810-501DAE64)

15.3 超シンプルなファイルシステム 377

探している名前を持つアイテムがフォルダにないときは、パターン item:rs

が空リストに合致しようとしてエラーが出ることに注意してください。また、注
目点がフォルダでなくてファイルである場合も、同じくエラーが出てプログラム
はクラッシュします。
これで、ファイルシステムの中を上下方向に移動できるようになりました。
ルートから "skull_man(scary).bmp"というファイルまで辿ってみましょう。

ghci> let newFocus = ⇨
(myDisk, []) -: fsTo "pics" -: fsTo "skull_man(scary).bmp"

こうすれば newFocusは "skull_man(scary).bmp"に注目しているはずです。
本当にそうなっているか、ジッパーの第一要素（注目点そのもの）をちょっと表
示してみましょう。

ghci> fst newFocus
File "skull_man(scary).bmp" "Yikes!"

じゃあ、今度は上に行って、近所のファイル "watermelon_smash.gif"を見
てみましょう。

ghci> let newFocus2 = newFocus -: fsUp -: fsTo "watermelon_smash.gif"
ghci> fst newFocus2
File "watermelon_smash.gif" "smash!!"

ファイルシステムの操作
ファイルシステムの中を移動できるようになった今となっては、ファイルシス

テムを操作するのも朝飯前です。まずは、注目しているファイルもしくはフォル
ダの名前を変更する関数です。

fsRename :: Name -> FSZipper -> FSZipper
fsRename newName (Folder name items, bs) = (Folder newName items, bs)
fsRename newName (File name dat, bs) = (File newName dat, bs)

さっそく "pics"フォルダの名前を "cspi"にしてみましょう。

ghci> let newFocus = ⇨
(myDisk, []) -: fsTo "pics" -: fsRename "cspi" -: fsUp

"pics"フォルダまで降りていって、名前を変え、再び上まで登りました。
では、現在のフォルダにアイテムを新規作成する関数は？ このとおり！

fsNewFile :: FSItem -> FSZipper -> FSZipper
fsNewFile item (Folder folderName items, bs) =

(Folder folderName (item:items), bs)

oyaji (20170810-501DAE64)

378 第 15章 Zipper

ちょろいもんだぜ。ただし、この関数はフォルダじゃなくてファイルに注目し
てるジッパーに使うとクラッシュするので注意が必要です。
では "pics"フォルダにファイルを追加して、ルートまで戻ってみましょう。

ghci> let newFocus = ⇨
(myDisk, []) -: fsTo "pics" ⇨
-: fsNewFile (File "heh.jpg" "lol") -: fsUp

これの何がすごいかって、ファイルシステムを更新したときに、データ構造自
体に修正が上書きされるのではなく、関数から新しいファイルシステム全体が
返ってくることです。この方式なら、古いファイルシステム（この場合はmyDisk）
にも新しい版（この場合は newFocus）にも同時にアクセスできます。
このようにジッパーを使えば、何もしなくてもバージョン管理が付いてきま

す。データ構造を書き換えた後でも、旧バージョンのデータに何の問題もなく
アクセスできます。これは何もジッパーに限った話ではなく、Haskell の性質
です。Haskellのデータ構造は immutable（一度定義すると変更できないもの）
だからです。ところがジッパーがあれば、そんな immutableなデータ構造の中
を楽に効率よく移動できるようになり、Haskellのデータ構造の永続性がいよい
よ輝き始めます†1。

15.4 足下にご注意
これまで二分木、リスト、ファイルシステムといったデータ構造のジッパーを

作ってきましたが、いずれも、足下を確かめずに歩き崖から落ちても気にしない
という実装でした。例えば、 goLeft関数は二分木のジッパーを取って左部分木
に注目点を移します。

goLeft :: Zipper a -> Zipper a
goLeft (Node x l r, bs) = (l, LeftCrumb x r:bs)

でも、今の足場が空の木だったら？ つまり Nodeではなく Emptyだったら？
すると、 Nodeへのパターンマッチは失敗し、部分木を持たない空の木と合致す
るパターンはないので、実行時エラーを食らってしまいます。
今までのところは、空の木の左部分木に注目しようとする奴なんていないだろ
う、そんな部分木なんてないんだし、と想定していています。空の木の左部分木
に行く処理なんて意味が分かりませんし、便宜のために単に無視してきたわけ
です。

†1 ［訳注］それでも、自作のデータ構造にいちいちジッパーなんて作ってらんないよ、と思いましたか？ そ
れこそ Haskellerにふさわしい怠け心です！ その怠け心こそが、ほぼあらゆる型に対してジッパーを自動
的に作ってくれる Data.Generics.Zipperモジュールを生み出した力なのです。

oyaji (20170810-501DAE64)

15.4 足下にご注意 379

また、何らかの木のルートにいてパンくず
リストが空のときに、さらに上に戻ろうとし
たら？ 同じエラーが発生するでしょう。ど
うやらジッパーを使っているときは、一歩
踏み出すたび、それが人生最期の一歩にな
る覚悟がいるようです（ここで不吉な BGM
入る）。いかなる移動も、運良く成功するか
もしれませんが、いつ失敗するかも分からな
いのです。これ、どこかで聞いた台詞ですよ
ね？そう、モナドです！具体的には、Maybe

モナド、普通の値に失敗の可能性という文脈
を追加するモナドです。
では、 Maybe モナドを使って、ジッパー
の移動に失敗可能性という文脈を追加しま
しょう。二分木を処理するジッパーをモナ
ディック関数に変えてみましょう。
まず、 goLeftと goRightが引き起こす可能性のある失敗をケアしましょう。
これまで、失敗するかもしれないという性質は、常に関数の返り値に反映されて
きました。今回も例外ではありません。
これが失敗の可能性が追加された goLeftと goRightです。

goLeft :: Zipper a -> Maybe (Zipper a)
goLeft (Node x l r, bs) = Just (l, LeftCrumb x r:bs)
goLeft (Empty, _) = Nothing

goRight :: Zipper a -> Maybe (Zipper a)
goRight (Node x l r, bs) = Just (r, RightCrumb x l:bs)
goRight (Empty, _) = Nothing

これで、空の木の左部分木を取ろうとしたら Nothing が返るようになりま
した！

ghci> goLeft (Empty, [])
Nothing
ghci> goLeft (Node 'A' Empty Empty, [])
Just (Empty,[LeftCrumb 'A' Empty])

よさげですね！ では、上に行く場合は？ 問題が起こるのは、上に行こうとし
たときにパンくずが 1つもない場合、つまりすでにルートにいた場合です。これ
が、木構造の境界に

気

木をつけていないとエラーを投げる goUp関数です。

oyaji (20170810-501DAE64)

380 第 15章 Zipper

goUp :: Zipper a -> Zipper a
goUp (t, LeftCrumb x r:bs) = (Node x t r, bs)
goUp (t, RightCrumb x l:bs) = (Node x l t, bs)

もっと行儀よく失敗するようにしましょう。

goUp :: Zipper a -> Maybe (Zipper a)
goUp (t, LeftCrumb x r:bs) = Just (Node x t r, bs)
goUp (t, RightCrumb x l:bs) = Just (Node x l t, bs)
goUp (_, []) = Nothing

パンくずがあればそれでよし、新しい注目点を「成功した計算」の文脈に入れ
て返します。パンくずがなければ失敗を返します。
以前は、この関数はジッパーを取ってジッパーを返していましたので、こんな
感じで連鎖させて木の中を歩き回ることができました。

ghci> let newFocus = (freeTree, []) -: goLeft -: goRight

ところが今は、 Zipper a を返す代わりに Maybe (Zipper a) を返すように
なったので、上記のような関数適用では連鎖できなくなりました。第 13章でピ
エールの綱渡りを扱ったときにも同じ問題にぶつかりましたね。ピエールも、一
歩ごとに失敗するかもしれない綱渡りを強いられていました。バランス棒の片
側に鳥がとまりすぎると落ちてしまうからです。
やれやれ、あの冗談を我が身で味わう羽目になるとは。今は僕ら自身が、自分

で生み出したデータ構造の迷宮の中を、危険を冒して歩いているのです。幸運な
ことに、僕らは綱渡りのピエールから学び、彼のやったことを真似できます。関
数適用の代わりに >>=を使えばよいのです。 >>=は、文脈付きの値（今の場合、
Maybe (Zipper a)という失敗する可能性の文脈）を取って関数に食わせつつ、
文脈が適切に処理されることを保証してくれます。ですから、ピエールがしたよ
うに、すべての -:演算子を >>=演算子で置き換えましょう。それだけで再び関
数を連鎖できるようになります。ご覧ください。

ghci> let coolTree = Node 1 Empty (Node 3 Empty Empty)
ghci> return (coolTree, []) >>= goRight
Just (Node 3 Empty Empty,[RightCrumb 1 Empty])
ghci> return (coolTree, []) >>= goRight >>= goRight
Just (Empty,[RightCrumb 3 Empty,RightCrumb 1 Empty])
ghci> return (coolTree, []) >>= goRight >>= goRight >>= goRight
Nothing

まず、左の枝に空の木を持ち右の枝には「2つの空の木を持つノード」を持つ
木 coolTreeを作ります。ジッパーを Justに包むのには returnを使い、それ
から >>=を使って goRight関数に食わせていきます。まず右へ 1歩踏み出すと
いうのは意味がある操作なので、結果は成功です。2歩でも大丈夫です。ですが
このとき、注目点は空の部分木になっています。そして右に 3歩というのは意味

oyaji (20170810-501DAE64)

15.4 足下にご注意 381

の通らない操作です。空の部分木を右に辿ることはできません。これが結果が
Nothingになった理由です。
こうして、ピエールの綱の下にあるような安全ネットが僕らの木にも付きまし

た（やったね）。

NOTE さっきのファイルシステムも、存在しないファイルやフォルダに注目しようとする
とか、さまざまな要因で失敗する可能性があります。ファイルシステム操作関数を、
Maybeモナドを使って行儀よく失敗するように改造するのは、読者への演習問題とし
ます。

oyaji (20170810-501DAE64)

382 第 15章 Zipper

15.5 読んでくれてありがとう！
それとも、最後のページを開いてくれてありがとう、かな？ あなたにとって

楽しくて役に立つ本だったとしたらうれしいです。この本では、プログラミング
言語 Haskell とそのイディオムについて、本質を見抜いた説明ができるよう努
力したつもりです。Haskellにはいつも、何か新しい概念が生まれ続けており、
勉強すべきことは尽きません。でも、今ならあなたには、かっこいいコードを書
き、また他人のコードを読んで理解する力が備わっているはずです。ですから、
さっそくコーディングを始めましょう！ そして「向こうの世界」でまた会いま
しょう。

oyaji (20170810-501DAE64)

付録A：
マルチバイト文字列処理に関する訳者補足

第 9章では、文字列を扱う処理を bytestringで書き直すのは比較的簡単だと
言われていますが、とくにマルチバイト文字列を扱うにあたっては、いくつか気
をつけなければならないところがあります。ここではそれを訳者による補足と
してまとめます。

文字コードとtext
bytestringはその名が示すとおり、バイト列からなる文字列です。一方 String

は、 Charのリストです。 Charはバイトよりも広い範囲の文字、具体的にはす
べてのユニコード文字を表現できます（4バイトを用いて表現されます）。その
ため、日本語のような 1 文字が 1 バイトに収まらない文字を含むテキストを扱
う場合、そのまま bytestringに書き換えると問題が生じます。

1つは文字のエンコードの問題です。多倍長文字列をファイルに書き出す、あ
るいはハンドルから入出力する際には、バイト列としてエンコードされる必要が
ありますが、そのためのエンコーディング（Shift_JIS、EUC-JP、あるいはUTF-8
など）を正しく扱う必要があります。エンコードされたバイト列をデコードせず
にそのまま扱うこともできますが、その場合、多倍長文字列を正しく扱うのは非
常に大変です。

String とほぼ同じ扱い方ができる高速なライブラリとして、 text という
パッケージがあります（http://hackage.haskell.org/package/text）。 こ
のパッケージは、効率の良い文字列型 Textを提供しています。 Textの内部表
現はバイト列ではなく、（現在の実装では）UTF-16でエンコードされた 16ビッ
ト列になっているので、簡単にユニコード文字列を扱えます。UTF-16 でエン
コードされているものの、APIとしては（オンザフライでデコードを行い）ユニ
コード文字を扱うものになっていますので、それを意識する必要はありません。
文字列長、サロゲートペアなどは自動的に正しく扱われます。textも bytestring
と同じく正格版と遅延版があります。遅延版だとチャンクサイズごとに処理さ
れます。

383

http://hackage.haskell.org/package/text

oyaji (20170810-501DAE64)

384 付録 A：マルチバイト文字列処理に関する訳者補足

OverloadedStrings拡張

もう 1 つの問題は、（ダブルクオートで囲まれた）文字列リテラルが
String の値だということです。bytestring/text とともに文字列リテラルを
使おうとすると、型を合わせるために、 String を bytestring/text に変換
（ Data.ByteString.pack 、 unpack という関数があります）、または逆の変換
を行うコードがいたるところに入ることになります。これはとても面倒です。
実は GHC には、文字列リテラルを数値のように多相的な定数として扱う機
能があります。既存のコードがコンパイルエラーにならないように、コンパイ
ラオプションで切り替えるようになっています。利用するには ghc コマンドに
-XOverloadedStringsを渡すか、

{-# LANGUAGE OverloadedStrings #-}

という行をコードの先頭に追加します。

{-# LANGUAGE OverloadedStrings #-}
import qualified Data.Text.Lazy as T
import qualified Data.Text.Lazy.IO as T

main = do
txt <- T.getContents
let out = T.unlines . map (T.append " ☆ ") . T.lines $ txt
T.putStr out

これは標準入力からテキストを入力して、各行の先頭に " ☆ " を追加して出
力するプログラムです。"☆ "がここでは Stringではなく、 Textとして扱わ
れています。
パターンマッチに多相的文字列を用いることもできます。

wordToInt :: Text -> Int
wordToInt " ひとつ " = 1
wordToInt " ふたつ " = 2
wordToInt " みっつ " = 3
wordToInt _ = 0

非 ASCII文字を含むコードをファイルに保存する場合は、UTF-8で保存する
ようにしてください。

oyaji (20170810-501DAE64)

ViewPatterns拡張 385

ViewPatterns拡張
bytestring/textと一緒に用いると便利なものに、ViewPatternsというGHC

拡張があります。 次のコードは文字列を画面に表示するプログラムです。text
の uncons関数は、与えられた文字列が空でなければ先頭の文字と残りの文字列
のペアを Justで包んだものを、空のときは Nothingを返す関数です。

putText :: Text -> IO ()
putText txt =
case T.uncons txt of

Just (x, xs) -> do
putChar x
putText xs

Nothing ->
return ()

Stringで同じようなことをするなら、 (:)でのパターンマッチを使ってとて
もシンプルに書けました。bytestring/text でも、ViewPatterns というものを
用いれば似たようなことができるようになります。

{-# LANGUAGE ViewPatterns #-}

putText :: Text -> IO ()
putText (T.uncons -> Just (x, xs)) = do
putChar x
putStr' xs

putText _ = return ()

ViewPatterns はネストして使うこともできます。miran.hs は、あなたの悩
みの種を入力すると明るく励ましてくれるプログラムです！

{-# LANGUAGE OverloadedStrings, ViewPatterns #-}

import qualified Data.Text as T
import qualified Data.Text.IO as T

main :: IO ()
main = do
yourWorry <- T.getLine
T.putStrLn $ encourage yourWorry
main

isNegative :: Char -> Bool
isNegative = (‘elem‘ " 非不未無 ")

encourage :: T.Text -> T.Text
encourage (T.uncons -> Just ((isNegative -> True), xs))
= T.append xs "!!"

encourage xs = xs

oyaji (20170810-501DAE64)

386 付録 A：マルチバイト文字列処理に関する訳者補足

$ ghc --make miran
[1 of 1] Compiling Main (miran.hs, miran.o)
Linking miran ...
$./miran
不景気
景気!!
非正規雇用
正規雇用!!
無気力
気力!!
未完成
完成!!

ViewPatterns 拡張について十分な解説を行うための十分な余白がないので、
ここで詳しく述べることはやめておきますが、興味のある方はぜひ GHCマニュ
アルに載っている解説を見てみてください！ 文字列以外にもさまざまなケース
で便利に使える機能です。

oyaji (20170810-501DAE64)

付録B：
訳語一覧

あ
アキュムレータ accumulator

値コンストラクタ value constructor

アプリカティブファンクター applicative functor

インポート import

写す map over

エクスポート export

か
型クラス type class

型クラス制約 class constraint

型コンストラクタ type constructor

型シグネチャ type signature

型シノニム type synonym

型注釈 type annotation

型引数 type parameter

型変数 type variable

カリー化 currying

関数合成 function composition

関数適用 function application

（再帰の）基底部 base case

具体型 concrete type

（計算）結果 result

結合性宣言 fixity declaration

結合的 associativity

後者 successor

構文糖衣 syntax-sugar

コラッツ列 Collatz sequences

さ
最小完全定義 minimal complete definition

サブクラス subclass

387

oyaji (20170810-501DAE64)

388 付録 B：訳語一覧

差分リスト difference list

サンク thunk

（型の）種類 kind

真理値 Boolean

シーザー暗号 Caesar cipher

ジェネレータ generator

（インスタンスの）自動導出 derive instance

（型の）推論 inference

（プログラムについての）推論 reasoning

生成する yield

セクション section

走査する traverse

束縛 bind

疎結合 loosely coupled

た
平らにする flatten

多相型 parameterized type

多相的 polymorphic

畳み込む fold

単一要素 singleton

遅延 I/O lazy I/O

中置関数 infix function

トリプル triple

な
（集合の）内包的表記 set comprehension

二項演算子 binary operator

二分探索木 binary search tree

は
パンくずリスト breadcrumbs

非決定性 nondeterministic

ファンクター functor

副作用 side effect

部分適用された関数 partially applied function

oyaji (20170810-501DAE64)

付録B：訳語一覧 389

（再帰の）部分問題 subproblem

文脈 context

プロミス promise

冪集合 powerset

方向リスト direction list

ま
無名関数 anonymous function

命令型 imperative

持ち上げ lift

ら
乱数ジェネレータ random generator

リスト内包表記 list comprehension

レコード構文 record syntax

レンジ range

連想リスト associative list

oyaji (20170810-501DAE64)

oyaji (20170810-501DAE64)

索引

記号・ギリシア文字
$.83
結合性 . 83
優先順位 .83

⇨ . 17
Y= .73
\ . 73
% .357
#haskell . v
@（パターンマッチ） . 40
'（シングルクオート）
型変数の名前の一部 . 155
関数名の一部 . 7
文字 . 26

()（丸括弧）
I/Oアクションの結果 .161
インポート . 91
演算の順序 . 2
型クラス制約 .33
型宣言 . 65
関数適用 .5
少なくする . 83
セクション . 64
前置関数 .28
タプル . 19
パターンマッチ . 39
ユニット .26
ラムダ式 . 73, 74

{}（中括弧） . 119
*
型の種類 . 156
積 . 2

++ . 8, → 連結
定義 . 138
パターンマッチ . 40
モノイド . 268

,（カンマ）
型クラス制約 .33
タプル . 19
リスト . 7
リスト内包表記 . 16

-（マイナス）
セクション . 64
優先順位 .2

-> . 25, 62
(->)型コンストラクタ . 231
アプリカティブファンクター . 249
結合性 . 65
ファンクター .231
モナド . 330

.（ピリオド）
関数合成 .84
モジュール . 92

..（ピリオド2つ）
値コンストラクタ .115
リストにおける列挙 . 13

:（コロン）
cons .8
GHCiコマンド .viii
値コンストラクタ .137
パターンマッチ . 38

:: .121
型宣言 . 24
型注釈 . 30
レコード構文 .119

:i（GHCiコマンド） . 147
:info（GHCiコマンド） . 147
:k（GHCiコマンド） . 156
:l（GHCiコマンド） . viii, 5
:m +（GHCiコマンド） . 90
:quit（GHCiコマンド） .viii
:r（GHCiコマンド） . viii
:set +m（GHCiコマンド） .22
:set（GHCiコマンド） . 233
:t（GHCiコマンド） .23,66
;（セミコロン） .46
< .9, 29
リダイレクト .176

<$> . 244
<*> . 240, 241

IO . 247
ZipList . 250
関数（(->)） . 249
結合性 . 243
モナドにおける .→ ap

<-
do . 162
モナド . 297
リスト内包表記 . 15, 47

<= . 9, 29
<=< . 312, 356
= . 5
ガード . 42
他言語における代入 . 333
間違い . 164

== .2, 27,28
=> . 28, 123
/= . 2, 28
> .9, 29
>= . 9, 29
>> . 287, 294
>>= . 287

[] . 302
Either . 341
Maybe . 288
Maybeで理解 . 293
Stateモナド . 336
Writer . 321
入れ子 . 296

[]（角括弧）
MonadPlus . 304
アプリカティブファンクター . 245
型コンストラクタ .149,152
空リスト . 8, 38
ファンクター .152
モナド . 301
モノイド . 268
リスト . 7

|
ガード . 41
データ型 . 111
リスト内包表記 . 15

||（論理和） .2
モノイド . 271

!! . 9, 188
&&（論理積） .2
モノイド . 271

_（アンダースコア）
パターンマッチ . 38
予約語 . 38

391

oyaji (20170810-501DAE64)

392 索引

リスト内包表記 . 17
`（バッククオート） . 4
λ . 73

A
a（型引数） . 120
a（型変数） .26
All型 . 271
and . 81, 272
any .94
Any型 . 271
ap .345
appendFile . 186
Applicative型クラス .240

Monadから作る .345
applyMaybe . 285
asパターン .40

B
Bool型 . 24,26
モノイド . 271

Bounded型クラス . 32
自動導出 . 130

bracket . 184
bracketOnError . 189,209
break . 376
bytestring . 205
ByteString型 . 206

C
cabal . 89
case . 48–49
構文 . 48
パターンマッチとの比較 .48

Char型 . 24,26
chr .95
class . 143
compare . 42
concat

bytestring .207
モノイド . 269

cons . 207
cons . 8
Control.Applicative . 240, 250, 252
Control.Exception . 184,189
Control.Monad . 170,172, 349
Control.Monad.Error . 341
Control.Monad.Instances .330
Control.Monad.State . 335
Control.Monad.Writer . 320
copyFile .208
cos .33
cycle . 14

D
data .111,131, 258

newtypeとの違い . 263
Data.ByteString .206
Data.ByteString.Lazy . 206
Data.Char .95
Data.Foldable . 277
Data.List .90
Data.Map .102
制約 . 103
ファンクター .155

Data.Monoid . 266
Data.Ratio . 357

delete . 188
deriving .113,258
可能なクラス .126

digitToInt .98,104
div .4
do

I/Oアクション . 162
Writer . 322
アプリカティブとしての . 247
関数モナド . 331
使いどころ . 299
モナド . 296

Double型 .25,33
drop . 12

E
Either型コンストラクタ . 134
入れ子を平らにする . 347
型の種類 . 157
箱の比喩 . 155
ファンクター .154
モナド . 341

elem . 12
再帰的な定義 .56
畳み込みで実装 . 78

else .6
Empty . 207
Enum型クラス .31
自動導出 . 130

EQ .29
Eq型クラス . 28,143
インスタンス .143
自動導出 . 127

error . 39
Error型クラス . 341

F
fail . 287,300

Writer . 321
False（真理値） . 2,26
filter . 69,349

bytestring .207
畳み込みで実装 . 79
複数の述語 . 70

filterM . 349
find . 99
First型コンストラクタ .276
flip . 67
使いどころ . 74

Floating型クラス . 33
Float型 . 25,33
fmap . 151,234

Data.Map . 155
Either . 154
I/Oアクション . 229
Maybe . 153
Tree .154
強化版 . 241
限界 . 240
文脈 . 228
持ち上げとしての .233
モナドにおける . 343
リスト . 152

Focus . 370
fold .→ 畳み込み
Foldable型クラス . 277
foldl . 76

bytestring .207
スタックオーバーフロー .96

oyaji (20170810-501DAE64)

索引 393

正格 . 98
foldl' . 98
foldl1 . 78
使いどころ . 79

foldl1' . 98
foldM . 351
foldMap . 278
foldr . 77

bytestring .207
Foldable . 277

foldr1 . 78
使いどころ . 79

forever . 172
forM . 172
fromChunks . 207
fromIntegral . 33,72
fromList .102
fromListWith . 105
fst .20
型 . 27

Functor型クラス . 151
インスタンスになれる型の種類 157,228
実装 . 151

G
gcd . 323
GeneralizedNewtypeDeriving . 259
get . 338
getArgs . 191
getContents . 176
getLine .162,163
箱の比喩 . 248

getProgName . 191
getStdGen .202
getZipList . 251
GHC .viii
ghc-pkgコマンド . 315
GHCi . 1

I/Oアクション . 164, 171
終了 . viii
中で関数を定義 . 16
中で名前を定義 . 7
表示 . 169
複数行 . 22
モジュールにアクセス . 91

ghci . viii
ghci>（プロンプト） . 1
GHC拡張

GeneralizedNewtypeDeriving .259
NoMonomorphismRestriction .233
OverloadedStrings . 384
ViewPatterns . 385

ghcコマンド .161
GHCコンパイラ .161
group . 92
GT . 29, 63
guard . 305

H
Hackage . 89
Handle型 .182
Haskell Platform . viii
hClose . 183
head . 10

bytestring .207
型 . 26

head .10
空リストの . 10

Hello, Worldプログラム . 160
hGetContents . 182
hGetLine .185
hiding . 91
Hoogle . 90
hPutStr . 185

bytestring .209
hPutStrLn .185

I
I/O . 159–209
I/Oアクション .161
繰り返し . 172
実行されるタイミング .164
条件で実行 . 170
糊付け . 162
箱の比喩 . 163

id .149
if .6

JavaScriptの . 148
ガードとの比較 . 41

immutable . 378
import . 90
in .46
省略 . 47

infixl . 138
init . 10

bytestring .207
insert . 104
instance .144,258
Integer型 .25
Integral型クラス . 33
interact .179
Int型 . 25,111
範囲 . 25

IOMode型 .182
IO型コンストラクタ . 162
アプリカティブファンクター . 247
ファンクター .228

isDigit . 104
isInfixOf .95
isPrefixOf .94

J
join . 346,347
Just . 99

L
last . 10
畳み込みで実装 . 80

Last型コンストラクタ .276
Left . 134
length

bytestring .207
型 . 33

let . 7, 16,45–48
doの中 . 165
GHCi .47
whereとの違い . 46
構文 . 46
モナドとの対比 . 296

liftA2 . 252,346
liftM . 343
lines . 178
lookup . 102
LT .29

oyaji (20170810-501DAE64)

394 索引

M
main . 162,164
再帰 . 167

Map . 102
キーの重複 . 103
サイズ . 104
表示 . 103

map .68
Map .105
bytestring .207
Data.Map . 105
I/Oアクション . 171
値コンストラクタ .113
畳み込みで実装 . 77
ファンクターとしての .152
複数のリスト .72
例 . 68

mapM . 172
mapM_ . 172
mappend . 267
max . 4, 42
型 . 62
カリー化 .61

maxBound . 32
maximum . 12
再帰的な定義 . 52–53
畳み込みで実装 . 78

Maybe型コンストラクタ . 99, 120
fmap .234
アプリカティブファンクター . 241
型の種類 . 156
順序 . 129
畳み込み . 277
ファンクター .153
モナド . 284
モノイド . 275

mconcat . 267
mempty . 267
min .4
minBound . 32
minimum . 12
mkStdGen .198
MonadPlus型クラス .304
MonadState型クラス .338
Monad型クラス . 286
Monoid型クラス .257,266, 318
mplus . 304
mtlパッケージ . 315
mzero . 304

N
newStdGen .202
newtype . 257

dataとの違い . 263
制限 . 259
使いどころ . 258, 260,358

NoMonomorphismRestriction . 233
not（論理否定） . 2
Nothing . 99
null . 11

bytestring .207
Num型クラス .32,206

O
of .48
openTempFile . 188
or .272
ord .95

Ordering型 . 29
モノイド . 272

Ord型クラス .29
自動導出 . 129

otherwise .42
OverloadedStrings . 384
Oフラグ . 226

P
pack . 206
powerset .350
pred . 31
Prelude（モジュール） . 89
Prelude>（プロンプト） . 1
print . 169
product . 12
Product型コンストラクタ . 270
pure . 240,241

IO . 247
ZipList . 251
関数（(->)） . 249
リスト . 245

put . 338
putStr . 168,169
putStrLn .161

Q
qualifiedインポート . 91

R
random . 198,339
RandomGen型クラス .198
randomR . 201
randomRs .201
randoms . 200
Rational型 . 357
read . 30
型注釈 . 128
多相型 . 128

Readerモナド .331
readFile .185

bytestring . 208, 209
reads . 204,353
Read型クラス .30
自動導出 . 127

removeFile . 188
renameFile . 188
repeat . 14
再帰的な定義 .55

replicate . 14,53
return . 167,229

[] . 302
Either . 341
Maybe . 288
Monad . 287
Stateモナド . 335
Writer . 321
アプリカティブとしての . 247
関数 . 330
束縛 . 167
モナドにおける役割 . 311

reverse . 11
bytestring .207
再帰的な定義 .55
畳み込みで実装 . 79

Right . 134
RPN . 211
runWriter .320

oyaji (20170810-501DAE64)

索引 395

S
safe . 39
scanl . 82
scanr . 82
sequence .170
アプリカティブ . 253

show . 29, 98
Show型クラス .29
インスタンス .144
関数 . 65
自動導出 . 127
レコード構文 .119

sin .33
size . 104
snd .20
sort . 93
sqrt . 33
state . 335
乱数ジェネレータ .339

State型コンストラクタ .335
Stateモナド .332
入れ子を平らにする . 347

StdGen型 .198
stdin .181
stdout .181
String型 .30,131
strMsg . 341
subtract . 64
succ . 3, 31
sum .12
畳み込み .76

Sum型コンストラクタ . 270
System.Directory .187
System.Environment . 191
System.Random . 198,339

T
tail . 10

bytestring .207
tail . 10
tails . 94
take . 11
再帰的な定義 .54

takeWhile .71
bytestring .207

tell . 322
Text . 383
toChunks .207
Tree型コンストラクタ .139

Foldable . 278
畳み込み . 279
ファンクター .153

True（真理値） . 2,26
type . 131

dataやnewtypeとの違い . 263

U
undefined .261
Unicode文字 . 26
シフト . 96
数字に変換 . 95

unit型 . 161
unlines . 178
unpack . 207

V
ViewPatterns .385

W
Wallオプション . 37
when . 170
where .43–45

letとの違い . 46
インデント . 44
スコープ .44

withFile .183
Word8型 .206
words . 92
writeFile .186

bytestring .209
Writer型コンストラクタ . 320
Writerモナド
入れ子を平らにする . 347
導出 .316–320

X
x:xsパターン .38

Y
YesNo型クラス . 148

Z
zip .20
再帰的な定義 .56

ZipList型 . 250
Zipper . 370
Zipper型コンストラクタ . 370
zipWith . 66,251

ア
アキュムレータ . 75
型 . 77

asパターン .40
値
関数型における .v
ソースコードにおける .134
名前をつけたい . 43
命令型における .v

値コンストラクタ . 111
map .113
エクスポートしない . 116
型コンストラクタとの区別 . 125,133
正体 . 112
中置関数 . 137
名前の慣習 . 114
パターンマッチ . 113
部分適用 . 113
命名規則 . 111

アプリカティブ・スタイル . 243–245
アプリカティブ則 . 252
アプリカティブファンクター . 239,240
強化版 . 281
限界 . 293
動機 . 282

アルゴリズム
クイックソート . 57
途中を報告 . 325
ユークリッドの互除法 .323

アンダースコア . 17

イ
一時ファイル . 188
一分木 . 372
インスタンス . 27

oyaji (20170810-501DAE64)

396 索引

調べる . 147
多相型 . 145
作り方 . 143

インストール . viii
インデント

do . 165
where .44
ガード . 41

インポート .90
特定の関数のみ . 91
特定の関数を除外 .91

ウ
写す . 151

エ
エクスポート .89, 106
自作モジュールの .115

エラー処理 .352
エラーメッセージ

Ambiguous type variable 30,199, 342
Couldn’t match expected type . 19
No instance for .3, 64
Non-exhaustive patterns . 37,40
stack overflow . 97
undefined . 262

演算子
実際には関数 .28
優先順位 .2

カ
ガード . 41–43
再帰 . 54

角括弧 .7, 8
拡張子 . viii
確率 . 357
数
型 . 25
型クラス .32
文字列に変換 .98
モノイド . 269

型
dataとnewtypeとtypeの使い分け 264
型の型 . 156
関数 . 62
具体型 . 121
状態付きの計算 . 333
ソースコードにおける .134
多相的 . 122
作り方 . 111–155
ドキュメントとしての .132
特殊化 . 123
複数クラスのインスタンスにする258
別の型に見せかける . 258
別名 . 131
命名規則 . 111

型安全 .26
型クラス .27, 142
サブクラス . 145
注意点 . 34

型クラス制約 . 28
サブクラス . 145
データ宣言 . 123

型検査 . 126
インスタンスの妥当性 .309

型コンストラクタ . 120
値コンストラクタとの区別 . 125,133

部分適用 . 133
型シグネチャ . 58
型システム . 23, 156,213
型シノニム .131
多相化 . 133
使いどころ . 132, 264

型推論 . vii, 23,120, 259
型宣言 .24
習慣 . 213
ドキュメントとしての .162

型注釈 .30
random . 199
使いどころ . 121

型同義名 . 131
型引数 . 120
型シノニム . 133
使いどころ . 123

型変数 .26
名前の慣習 . 27
命名規則 . 143
命名の慣習 . 146

括弧
インポート . 91
演算の順序 . 2
型クラス制約 .33
型宣言 . 65
関数適用には使わない . 5
少なくする . 83
セクション . 64
前置関数 .28
パターンマッチ . 39
必要な場合 . 7
ラムダ式 . 73, 74

空リスト . 8
カリー化 . 61–65, 233
高階関数 .68
ラムダ式との比較 .74

関数
Readerモナド . 331
アプリカティブファンクター . 249
型 . 24, 62
カリー化 . 61–65
工場の比喩 . 62
構文 . 35–49
探す . 90
前置 .3
正しさの証明 . vi
多引数 . 61
中置 .3
名前の慣習 . 7
引数なし .7
表示 . 64
ファンクターとしての .231
複数の引数 . 65
文脈を付ける .331
リストの一連の要素に適用 . 80
リストの各要素に適用 . 68

関数型プログラミング
パターン .22
例題 . 211

関数合成 .84–88
fmap .231
結合性 . 85
多引数関数 . 85
使いどころ . 85
モナド . 312, 355
やり方 . 86

関数定義
GHCiで . 16
whereで . 45
構文 .5

oyaji (20170810-501DAE64)

索引 397

再帰 . 36, 51
順番 .5

関数適用 . 3
$. 83
モナドとして見る .308
優先度 . 4

関数のリスト
同じ引数に適用したい .254

カンマ
型クラス制約 .33
タプル . 19
リスト . 7
リスト内包表記 . 16

キ
木構造

Foldable . 278
Zipperで辿る . 368
書き換え . 370
代数データ型 .139
場合分けとしての .303
パターンマッチで辿る .364
パンくずリストで辿る .366
方向リストで辿る .365
リストに変換 .280

疑似乱数 . 197
基底部 . 51, 59
ない . 55
複数 . 56

逆ポーランド記法 . 211

ク
クイックソート . 57–59

filterによる実装 . 70
アルゴリズム .57
実装 . 58

空リスト . 8
具体型 . 121, 156
クラス .→ 型クラス
オブジェクト指向の .28,126, 142

グローバル乱数ジェネレータ . 202

ケ
警告 . 37
計算
実行 . 52
ファンクター .232

結合性 . 138
デフォルトの .138

結合的 . 266
結合法則（モナド） . 311

コ
高階関数 . 61
カリー化 .68
実演 . 65

後者 . 4, 31
合成（関数の） . 84–88
コマンドライン引数 . 190
小文字
パターンマッチ . 36

コラッツ列 .71
コンパイラ .viii
コンパイル .161
最適化オプション .226

サ
再帰 . 36, 51–59

main .167
重要性 . 52
定跡 . 59
データ型 . 136

再帰関数
定義 . 101

最小完全定義 . 144
最大公約数 .323
最適化 . 226
サブクラス .145
サブモジュール .108
差分リスト .326
サンク . 205
参照透明性 .vi
乱数 . 198

シ
シーケンス .170
シーザー暗号 . 95
ジェネリクス . 27
ジェネレータ . 47
軸（クイックソート） .57
辞書 . 100
実装
型が関数を . 28

ジッパー . 370
失敗する可能性

Either . 134
Maybe .99
合成 . 292
非決定計算との関係 . 302
モナド . 340
モノイド . 275

自動導出
可能なクラス .126
元の型の型クラスから .259

修飾付きインポート . 91,110
述語 .16, 69
モナドを返す .349

種類 . 156
順序
型クラス .29

純粋 . 159
条件

if . 6
リスト内包表記 . 16

状態 . 332
シングルクオート→ '（シングルクオート）
文字 . 26

真理値型 .24, 26

ス
推論
できない .31

数字
Unicode文字に変換 . 95

数値
型 . 3

スキャン . 82
使いどころ . 82

スタック .97, 333
逆ポーランド記法 .211

スタックオーバーフロー . 96
最適化 . 226

ストリーム .175

oyaji (20170810-501DAE64)

398 索引

スペース
関数適用 .3

セ
正格 . 7
正格bytestring . 206
正格評価 .97, 150
整数
型 . 25
型クラス .33

生成する . 161
静的型付け . vii
セクション .64
セミコロン .46
前者 . 31
前置関数 . 3
先頭 . 10

ソ
束縛 . 15

do . 162
doとletの使い分け . 165
do内で普通の値を .165
let . 45
return . 167
where .43
パターンマッチ . 35
モナド . 297

疎結合 .89

タ
大小比較関数 . 2, 29
代数データ型
木 .139
道路網 . 220
どんなとき独自に作るか . 220

対話環境 . viii
対話的プログラム . 191
対話モード . 1
多相型 . 122
インスタンスにする . 145
例 .123

多相定数 .32, 267
多相的関数 .27
畳み込み .75–83

Foldable . 277
木を作る . 141
図 . 76
使いどころ .75, 102,213
途中結果も欲しい .→ スキャン
左 . 76
右 . 77
右か左か .78
無限リスト . 81
モナド . 351
モノイド . 277
リストに対する関数適用としての .80

ダッシュ .→ '（シングルクオート）
多引数関数 .65
アプリカティブにする .252
合成 . 85
ファンクター値 . 239

タプル .18
型 . 26
操作関数 . 20–21
単一要素 .20
長さ . 20

パターンマッチ . 37
比較 . 20
要素の最大数 .26

単位元 . 266
単精度浮動小数点数 . 25
単相性制限 .233

チ
遅延bytestring . 206
遅延I/O . 176
遅延評価 .vi, 14,97, 150, 180
実現方法 . 205

逐次実行 . 248
チャンク . 206
中括弧 . 119
抽象データ型 . 117
中置関数 . 3, 4
値コンストラクタ .137
デフォルト . 28
部分適用 .64

中置記法
関数定義で使う . 42

直角三角形 .21

テ
定義 . 7
関数 .5

データ型
再帰的な . 136
作り方 . 111–155
名前の慣習 . 114

データ構造 .218
immutable . 378
Zipper . 370
畳み込み . 75, 277
辿る . 363

データ宣言
型クラス制約 .123

適用 . 3, → 関数適用
型コンストラクタ .156
部分 . 62
モナド . 287

手で解く . 213, 217
デフォルト実装 .143

ト
等値性 .2
特殊文字 . 28
ドット .→ .（ピリオド）
トリプル . 19
パターンマッチ . 38

ナ
内包的記法 .15
名前 . 7
名前の慣習
アポストロフィ 7,→ '（シングルクオート）
型変数 . 27

ニ
二分探索木 .139
入出力 . → I/O

oyaji (20170810-501DAE64)

索引 399

ハ
場合分け
木構造として見る .303
パターンマッチ . 35
モナドで書き直す .295

バージョン管理
ジッパー . 378

倍精度浮動小数点数 . 25
バインド . 287
パターン

Haskellプログラミング . 6,22
再帰 . 59
畳み込み .75
リストの再帰 .101

パターンマッチ . 35–40
case式との比較 .48
do . 299
ViewPatterns拡張 . 385
where .45
値コンストラクタ .139
ガード . 41
再帰 . 52
式の途中 .49
失敗 . 36
タプル . 37
使い捨ての値 .38
トリプル .38
任意の値に合致 . 36
ラムダ式 .74
リスト内包表記 . 38

バッククオート . 4
パッケージ .315
ハンドル . 182, 183

ヒ
比較 . 2
タプル . 20
優先順で . 274
リスト . 9

引数
入れ替え .67

非決定性計算
アプリカティブファンクター . 246
モナド . 301
モナドに見る .351
例題 . 306

ピタゴラスの定理 . 22
左恒等性 . 309
左畳み込み .76
否定 . 2
等しい .2
等しくない . 2
ピボット（クイックソート） . 57
評価
正格 . 97
遅延 . 97

標準出力 . 181
標準入力 . 181

フ
ファイル . 175
コピー . 208
追記 . 186
文字列として扱う .185
文字列として読むことの難点 . 205

ファイルシステム . 374
ファイルのロード .5

ファンクター .151, 227,228
合成 . 236
自作 . 235
動機 . 281
持ち上げ . 233

ファンクター則 .234
意味 . 236
満たさない例 .237

フィールド .112
フィボナッチ数列 . 51
フィルタ
リスト . 16

副作用 . vi, 159
複製 . 53
浮動小数点数 . 33
負の数 .2
部分適用 . 62
値コンストラクタ .113
型コンストラクタ . 133,154, 157
関数合成 .85
ラムダ式との比較 .74

部分問題 .52, 59
プライム .→ '（シングルクオート）
プログラム . 89, 160
実行 . 161
ファイルからの入力 . 176
命令型っぽい .162

プロミス . 178
プロンプト . 1
分数 . 357
文脈 . 228
アプリカティブ値 .241

ヘ
ペア . 19
キーと値の . 100
操作関数 . 20–21

平衡 . 139
冪集合 . 350
ベクトル . 19
別名 . 131
変換 . 151

ホ
ポイントフリースタイル . 87
注意 . 87

マ
丸括弧 .→ 括弧

ミ
右恒等性 . 310
右畳み込み .77

ム
無限リスト . 14, 55
関数 . 14–15
畳み込み .81

無名関数 . 73

メ
メソッド . 27

oyaji (20170810-501DAE64)

400 索引

モ
文字 . → Unicode文字
数に変換 .98
型 . 24, 26
数字かどうか .104
ユニコード . 383

モジュール .89
GHCiからアクセス . 91
インポート . 90
階層 . 108
作り方 . 107–110

文字列 .8
bytestring .205
Text . 383
型 . 24, 26
にする関数 . 29
比較 .9
マルチバイト文字列 . 383
連結 .8

文字列に変換 . 98
持ち上げ . 233
モナディック . 302
モナディック関数 . 342
モナディック述語 . 350
モナド

letとの対比 . 297
入れ子を平らにする . 346
自作 .356–361
動機 . 282

モナドのインスタンス
確率的計算（Prob） . 357, 360
共通の情報源を読む計算（Reader） 329, 331
失敗する可能性がある計算（Maybe） 283
失敗の情報付き計算（Either e） 340
状態付き計算（State） . 332, 335
非決定性計算（リスト） . 301
副作用を伴う計算（IO） .161
ログを伴う計算（Writer） 316, 320

モナド則 . 309, 360
モノイド . 257, 266
モノイド則 .267
問題
解き方 . 217

ユ
ユークリッドの互除法 . 323
ユニット . 26

ヨ
呼び出す .3, → 関数適用

ラ
ラムダ式 .73–75
カリー化との比較 .74
パターンマッチ . 74
必要ない .73
複数の引数 . 74
部分適用との比較 .74

乱数 . 197
グローバルジェネレータ . 202
コイントス . 199
サイコロ . 201
さまざまな型 .199
文字列 . 202
リストで . 200

乱数ジェネレータ . 198

ランタイムエラー . 39
ランダム . 197

リ
リスト .7

MonadPlus . 304
アプリカティブファンクター . 245
アプリカティブファンクター（Zipリスト） . . . 250
入れ子を平らにする . 347
型 .121
組み合わせ .16, 246,255
効率 .325, 329
ジッパー . 372
先頭 . 10
操作関数 . 10–12
違う型 .9, → タプル
作る . 13
独自に定義 . 137
残り . 10
比較 .9
非決定性計算 .246
ファンクター .151
フィルタ .16
モナド . 301
モノイド . 268
モンスターで可視化 . 10
要素が含まれるか .12
要素へのアクセス . 9
乱数 . 200
連結 .8

リスト内包表記 . 15
guardとの関係 .306
mapとの比較 . 69
アプリカティブで書き換え . 246
入れ子 . 18
パターンマッチ . 38
複数行 . 18
複数の述語 . 16
モナドとしての . 304

リソース . 184
リダイレクト . 175

レ
例外 . 184

undefined . 262
例題
逆ポーランド記法電卓 .212,352
最短経路 . 217
ナイトの駒 . 306, 356
ピエールの綱渡り .288,298
ファイルシステム .374

レコード構文 . 118
使いどころ . 120

列挙
型 . 31
レンジ . 13

列挙型 . 130
連結 . 8
効率 .8

レンジ .13
減少列 . 14
等差数列 .13
浮動小数点数 .15
無限リスト . 14

連想リスト .100
キーの重複 . 103
重複するキーを削除しない . 105

oyaji (20170810-501DAE64)

索引 401

ロ
ロード . viii
ログ（Writerモナド） . 316
論理積 .2

論理和 .2

ワ
ワークフロー . viii

oyaji (20170810-501DAE64)

原著者について

Miran Lipovača

Miran Lipovača はスロベニアのリュブリャナで計算機科学を学んでいます。Haskellへ
の情熱に加え、ボクシングとギター、それにお絵描きをたしなみます。踊るガイコツと数
字の 71、それに自分の念力で開けたふりをして自動ドアを通るのが大好きです。

訳者について

田中英行（たなかひでゆき）
（株）プリファードインフラストラクチャー勤務のプログラマ。プログラミングが好きな
あまりプログラミングそのものの科学を志し、その過程にて Haskell に辿り着く。プロ
グラミングで世の中の不可能を可能にしていきたい。Haskellと、ミステリー（特に叙述
モノ）、それからもふもふしてニャーと鳴く動物が好きです。

村主崇行（むらぬしたかゆき）
京都大学白眉センター特定助教。気がつけばHaskellでゲームを作り、Haskellで就職し
たような人生、関係諸方には頭が上がりません。物理のレベルを上げ、Real Worldな問
題に取り組むことでこの御恩に遍く報いたい。思い入れのある型クラスは Traversable
で、嫌いな関数は errorです。

oyaji (20170810-501DAE64)

s 本書の内容に関する質問は、オーム社開発部「すごい Haskell たのしく学ぼう！」係宛、
E-mail（kaihatu@ohmsha.co.jp）または書状、FAX（03-3293-2825）にてお願いします。お
受けできる質問は本書で紹介した内容に限らせていただきます。なお、電話での質問にはお
答えできませんので、あらかじめご了承ください。

すごい Haskellたのしく学ぼう！

平成 24年 5月 25日
平成 24年 7月 10日

第 1版第 1刷発行
第 1版第 3刷発行（v20120619 ）

著 者 Miran Lipovača
訳 者 田中英行・村主崇行
企画編集 オーム社開発局
発行者 竹生修己
発行所 株式会社オーム社

郵便番号 101 – 8460

東京都千代田区神田錦町 3 – 1

電 話 03 – 3233 – 0641

URL http://www.ohmsha.co.jp/

©オーム社 2012

装丁デザイン トップスタジオデザイン室（轟木亜紀子）

ISBN 978-4-274-06885-0

http://www.ohmsha.co.jp/

oyaji (20170810-501DAE64)

	訳者序文
	イントロダクション
	で、Haskellって何なの？
	Haskellの世界に飛び込むのに必要なもの
	謝辞

	はじめの第一歩
	1.1 関数呼び出し
	1.2 赤ちゃんの最初の関数
	1.3 リスト入門
	1.4 レンジでチン！
	1.5 リスト内包表記
	1.6 タプル

	型を信じろ！
	2.1 明示的な型宣言
	2.2 一般的なHaskellの型
	2.3 型変数
	2.4 型クラス 初級講座

	関数の構文
	3.1 パターンマッチ
	3.2 場合分けして、きっちりガード！
	3.3 where?!
	3.4 let It Be
	3.5 case 式

	Hello 再帰!
	4.1 最高に最高！
	4.2 さらにいくつかの再帰関数
	4.3 クイック、ソート！
	4.4 再帰的に考える

	高階関数
	5.1 カリー化関数
	5.2 高階実演
	5.3 関数プログラマの道具箱
	5.4 ラムダ式
	5.5 畳み込み、見込みアリ！
	5.6 $ を使った関数適用
	5.7 関数合成

	モジュール
	6.1 モジュールをインポートする
	6.2 標準モジュールの関数で問題を解く
	6.3 キーから値へのマッピング
	6.4 モジュールを作ってみよう

	型や型クラスを自分で作ろう
	7.1 新しいデータ型を定義する
	7.2 形づくる
	7.3 レコード構文
	7.4 型引数
	7.5 インスタンスの自動導出
	7.6 型シノニム
	7.7 再帰的なデータ構造
	7.8 型クラス 中級講座
	7.9 YesとNoの型クラス
	7.10 Functor型クラス
	7.11 型を司るもの、種類

	入出力
	8.1 不純なものと純粋なものを分離する
	8.2 Hello, World!
	8.3 I/O アクションどうしをまとめる
	8.4 いくつかの便利なI/O関数
	8.5 I/O アクションおさらい

	もっと入力、もっと出力
	9.1 ファイルとストリーム
	9.2 ファイルの読み書き
	9.3 ToDoリスト
	9.4 コマンドライン引数
	9.5 ToDoリストをもっと楽しむ
	9.6 ランダム性
	9.7 bytestring

	関数型問題解決法
	10.1 逆ポーランド記法電卓
	10.2 ヒースロー空港からロンドンへ

	ファンクターからアプリカティブファンクターへ
	11.1 帰ってきたファンクター
	11.2 ファンクター則
	11.3 アプリカティブファンクターを使おう
	11.4 アプリカティブの便利な関数

	モノイド
	12.1 既存の型を新しい型にくるむ
	12.2 Monoid大集合
	12.3 モノイドとの遭遇
	12.4 モノイドで畳み込む

	モナドがいっぱい
	13.1 アプリカティブファンクターを強化する
	13.2 Maybeから始めるモナド
	13.3 Monad型クラス
	13.4 綱渡り
	13.5 do記法
	13.6 リストモナド
	13.7 モナド則

	もうちょっとだけモナド
	14.1 Writer？中の人なんていません！
	14.2 Reader？それはあなたです！
	14.3 計算の状態の正体
	14.4 Errorを壁に
	14.5 便利なモナディック関数特集
	14.6 安全な逆ポーランド記法電卓を作ろう
	14.7 モナディック関数の合成
	14.8 モナドを作る

	Zipper
	15.1 歩こう
	15.2 リストに注目する
	15.3 超シンプルなファイルシステム
	15.4 足下にご注意
	15.5 読んでくれてありがとう！

	付録A：マルチバイト文字列処理に関する訳者補足
	文字コードとtext
	OverloadedStrings拡張
	ViewPatterns拡張

	付録B：訳語一覧
	索引

