

i

はじめに

思わず絶叫していました。2017年 5⽉ 18⽇未明（JST）、私が友⼈たちと⼀緒
に Google I/Oの Keynoteの⽣中継を観ていたら、思いがけない朗報が発表され
ました。Androidアプリ開発⾔語として「Kotlin」が正式サポートされるという
ニュースです！ 私は以前からの Kotlinの⼤ファンで、この瞬間を何年も待ち望
んでいました。この Googleの決定は、世界中の多くの Kotlinユーザーに勇気を
与えてくれるものです。今こそ、Kotlinを始める時が来たのです！
とは⾔っても、今回の発表ではじめて Kotlinというプログラミング⾔語を⽿に
した開発者も多くいることでしょう。「Kotlinとは何だ？」とか「なんで Kotlin

なのか？」とか「どうやって学べばいいのか？」という⼾惑いもあるかと思いま
す。そこで Kotlinへの情熱に突き動かされた 

エ ン ジ ニ ア
愛の戦⼠ たちが集い、「多くの⼈に

Kotlinの良さを知ってもらいたい」という想いで本書を執筆しました。
本書はタイトルのとおり「⼊⾨までの助⾛」をサポートします。サクサク読め
るようボリュームを少なく抑え、サンプルコードをごくシンプルなものに留めて
います。3章で構成し、読み物として楽しめる導⼊部分から始まります。コード
を交えた具体的な解説に続き、最後に次のステップを⽰して締めくくります。
書籍の体裁を取ったのは、筆者の⾃信の現れでもあります。Kotlinは楽しいプ
ログラミングライフをもたらしてくれるでしょう。本書がその⼿助けになれば、
我々にとってこれ以上の幸せはありません。

2017年 5⽉吉⽇ 著者代表 ⻑澤 太郎

ii

⽬次

はじめに i

第 1章 Kotlinについて知る 1

1.1 Kotlinとは . 1

1.2 Kotlinを使うと何が嬉しいのか 3

1.3 Kotlinの特徴 . 5

1.4 将来の展望 . 8

1.5 導⼊事例 . 9

第 2章 Kotlinを学ぶ 13

2.1 環境構築から HelloWorldまで 13

2.2 Kotlinの味⾒ . 28

2.3 Javaから Kotlinへの移⾏ . 60

第 3章 次のステップ 74

3.1 学習⽅法 . 74

3.2 コミュニティ . 75

3.3 次回リリースの予告 . 76

参考⽂献 78

著者⼀覧 79

1

第 1章

Kotlinについて知る

本章は「Kotlinとはどういうプログラミング⾔語なのか」という疑問に
対する回答です。特徴や誕⽣の背景、これからどうなっていくのか、実際
に使⽤している企業を紹介します。あまりコードは登場しませんが、雰囲
気を知るには打ってつけの内容です。

1.1 Kotlinとは
Kotlin（ことりん）*1は、JetBrain社が Javaに代わり、より簡潔に書くことを

⽬的として作られた JVM（Java仮想マシン）上で動作する静的型付き⾔語で、
JavaScript へのトランスパイル*2も可能です。また、2017 年 5 ⽉現在はまだプ
レビュー版ですが、LLVM toolchainを使ってネイティブコードにコンパイルす
ることで iOS等のクロスプラットフォームでの動作を⽬指しています [1]。構⽂
は Java と互換性がありませんが、Kotlin は Java コードと相互運⽤するように
設計されており、コレクションフレームワーク等の既存の Java クラスライブラ
リーの Javaコードに依存しています。既存の Javaプロジェクトでも⼀部のファ
イルのみを Kotlin で書くことができるので、移⾏のハードルが低いのも特徴で

*1 Kotlin という名前は JetBrains 社が拠点とするロシアのサンクトペテルブルク近郊のコトリ
ン島に由来します [2]

*2 ソースコードからソースコードへ変換すること

第 1章 Kotlinについて知る 2

しょう。さらに、Kotlinを開発している JetBrains社は IntelliJ IDEAと呼ばれ
る IDE（統合開発環境）を開発していることも⼤きな強みです。IDE のサポー
トがあることで、⾔語の実装とツールのサポートの両⽅で恩恵を受けられます。

思想
Kotlinは他の主要⾔語と⽐較して歴史が浅く、さまざまな⾔語の影響を受けて
います。Kotlin のメイン開発者である Andrey Breslav は Java、Scala、C ＃、
Groovy に⼤きな影響を受け、他にも Objective-C、Gosu、Spec ＃、Python、
Ei�el 等の⾔語を参考にしたと述べています [3]。他の⾔語の良い部分を積極的
に取り⼊れることで、モダンで書きやすい⾔語を⽬指しているように思えます。
Kotlin の⽬標のひとつとして、Java と同等のコンパイル速度にすることを掲げ
ています [4]。現状はまだ Javaと同等のコンパイル速度ではありませんが、意識
するほど遅くはないため実務上使⽤しても何ら問題のないレベルのスピードです
[5]。また、Androidでの利⽤も強く意識しており、Kotlinを導⼊する障壁となる
64Kメソッド数問題*3を解決するため、ランタイムのメソッド数が少ないのも⼤
きな特徴です。

歴史
Kotlin は 2010 年頃に開発を開始して、2012 年 2 ⽉ 14 ⽇に Apache license

Version 2.0にてオープンソース化されました。その後 2012年 4⽉ 12⽇にマイ
ルストーンの Version 1 として Kotlin M1 をリリースしています。当初は Java

の代替⾔語として開発されていた Kotlin ですが、2013 年 8 ⽉にリリースした
M6 からは Android Studio をサポートし、M11 で Android Extensions 等の機
能が追加され Android 開発を強く意識した⾔語になりました。2015 年 10 ⽉の
M14 リリースのあと 1.0-beta1~4、1.0-RC を経て 2016 年 2 ⽉ 15 ⽇ 1.0 がリ
リースされました。2017年 5⽉現在の最新バージョンは 1.1.2になっています。
1.0リリースと同時に主にサーバーサイドで多く利⽤されている Spring Bootの

*3 Androidでは 65536（64× 1024）のメソッドカウント制限があります https://developer.

android.com/studio/build/multidex.html

https://developer.android.com/studio/build/multidex.html
https://developer.android.com/studio/build/multidex.html

第 1章 Kotlinについて知る 3

正式サポートも発表しています。1.0 の正式リリースにより、国内外の企業で主
に Androidアプリ開発への利⽤実績が認められ、ついに「Google I/O 2017」と
いう世界的なカンファレンスで、Googleが Androidでの Kotlin公式サポートを
発表しました。M1から Kotlin 1.1.0までの Kotlinの変化の過程を表 1.1に⽰し
ます。

1.2 Kotlinを使うと何が嬉しいのか
Kotlinがリリースされて以来、Googleの公式サポートがないにもかかわらず、
⼀部の Android開発者の中で熱狂的に⽀持されてきました。彼ら（例外もいます
が）は、新しいものにただ⾶びついたわけではありません。Kotlinは次の点で優
れており、採⽤が進んでいます。

� Android開発との親和性の⾼さ
� ⽣産性の⾼さ
� メンテナビリティの⾼さ

具体的な例は後述するとして、ここではそれぞれの項⽬について概要を説明し
ます。

Android開発との親和性の⾼さ
Kotlin と Android の親和性は⾮常に⾼いです。Kotlin は特に何も設定せず

に、直接 Java のコードを呼び出すことができます。また Java からも Kotlin

のコードを呼び出すことが可能です。すでに多くのプロジェクトで⼈気がある
Retro�t*4のような Java 製ライブラリーを利⽤することも可能です。Kotlin で
すべてを書き直す必要はなく、既存の Javaプロジェクトに Kotlinを途中から導
⼊することもできます。JVM上で動く他の⾔語でも同じことが可能なのですが、
Kotlinはそれらに⽐べ次の点で Android開発との相性の良さが伺えます。

� メソッド数が少ない

*4 タイプセーフな HTTPクライアントライブラリ http://square.github.io/retrofit/

http://square.github.io/retrofit/

第 1章 Kotlinについて知る 4

� JetBrains社による強⼒な IDEのサポートがある
� ライブラリのサイズが⼩さい（Kotlin v1.1.2-2 のライブラリサイズは
859KB）

⽣産性の⾼さ
Kotlinの⽣産性は次の点で明らかに向上します。

� 少ない記述量
� コレクション操作などの便利な関数
� Javaにはない有⽤な機能

Kotlin は後発の⾔語ということもあり、⽂法が洗練されています。極⼒、冗
⻑なコードを書くことなくアプリ開発を⾏うことが可能です。たとえば id,

nameを持った Personクラスの定義を Javaで書く場合、getId(), getName(),

setName(String name), toString(), hashCode(), equals(Object) メソッ
ドを⽤意する必要がありました。Kotlinでは dataクラスを使うことにより、⼀
⾏書くだけでそのすべての実装を Kotlinが⽣成します。
シングルトンを使ったことがありますか？ Kotlinでは classを objectと書

き換えるだけでシングルトンの実装が完了します。
他にもいろんな⼯夫が散りばめられています。これらの⼯夫のおかげで、Java
と⽐較し多くのプロジェクトでコード量を削減することが可能です。
Java ではコレクション操作が⼤変ですが Kotlin ではコレクション操作のた
めの多くのメソッドが⽤意されています。これらのメソッドのおかげでシンプ
ルかつ直感的に書けるようになります。Kotlinでコレクションを操作する場合、
forループを使うことは滅多にありません。Javaでの Androidアプリ開発時は
Retrolambda*5を導⼊しない限り利⽤することができなかった、より短く記述で
きるラムダ式にもデフォルトで対応しています。
Java にはない便利な⽂法も多数存在します。拡張関数、遅延初期化、演算⼦

*5 Java7 で Lambda を 使 う た め の ラ イ ブ ラ リ https://github.com/orfjackal/

retrolambda

https://github.com/orfjackal/retrolambda
https://github.com/orfjackal/retrolambda

第 1章 Kotlinについて知る 5

オーバーロード、エルビス演算⼦などなど盛りだくさんです。⼀度これらを使っ
てしまえば、なぜ Javaにこれらが存在していないのかと疑問に思うはずです。

メンテナビリティの⾼さ
Kotlinは変数定義時に、この変数が「読み込み専⽤か上書きできるかどうか？」

と「Null許容型か Null⾮許容型かどうか？」を定義する必要があります。読み
込み専⽤変数を定義し、その変数を上書きするようなコードを書いてみて下さい。
Kotlinではこのようなコードはコンパイルエラーになります。同様に Null⾮許
容型の変数に nullを代⼊してもコンパイルエラーとなります。逆に上書きでき
る変数定義をして、実際にその変数が上書きをしていなかった場合、読み込み専
⽤変数へと定義を変更するように IDEが警告してくれます。変数の再代⼊を極⼒
避けるようなコードを、チーム全体が特に苦なく書けるようになります。Kotlin
の変数定義だけを⾒ても NullPointerExceptionや再代⼊を避けたメンテナビ
リティの⾼いコードが書けるように、⾔語レベルで設計されています。

1.3 Kotlinの特徴
静的型付けのオブジェクト指向⾔語
Kotlinは Javaと同じく静的型付けの⾔語です。静的型付けとはコンパイル時
など、プログラムの実⾏前に型が決まることです。実⾏するまで、ある変数に⽂
字列が⼊っているのか、数値が⼊っているのか分からないということはありませ
ん。そして NullPointerExceptionをはじめとする、nullにまつわる問題をう
まく扱うことができる⾔語機能も提供されています。
また、Java と同じくオブジェクト指向⾔語です。オブジェクト指向とはオブ
ジェクトとメッセージの相互作⽤をもとにした考え⽅です。この考え⽅を踏襲し
た⾔語のことをオブジェクト指向⾔語と⾔います。

第 1章 Kotlinについて知る 6

Kotlinがターゲットとするプラットフォーム
Kotlinはフルスタックな⾔語を⽬指し開発が⾏われています。Androidを始め

とする JVM上で使⽤可能です。もちろんサーバーでも使⽤可能です。
⼀⽅で、JVM 上以外でも動作するようにも開発されています。その内の 1

つが、バージョン 1.1 でサポートされた JavaScript へのトランスパイルです。
Webフロントエンド開発は多くのエコシステムのもとに成り⽴っており、現在の
Web フロントエンド開発で⽤いられている npm や webpack、React 等の使
⽤も可能となっています。これらにより、Kotlinを⽤いてサーバー・Android・
JavaScriptまでフルスタックに開発することが可能になりました。
そして、現在は Kotlinを LLVMコンパイラーを通して機械語にコンパイルで

きる「Kotlin/Native*6」が開発されています。開発者はソースコードを記述し、
特定のプラットフォームで動作可能な機械語に変換する必要があります。このと
き、プログラミング⾔語によってコンパイル⽅法が異なります。LLVMはその依
存を吸収するために、プログラミング⾔語とプラットフォームの両⽅から独⽴す
る中間コードを⽣成します。プレビュー版では次のプラットフォームがターゲッ
トとされています。

� Mac OS X 10.10 and later (x86-64)

� x86-64 Ubuntu Linux (14.04, 16.04 and later)

� Apple iOS (arm64)

� Raspberry Pi

LLVMを利⽤しているので、今後さらなるプラットフォームへの拡張が期待で
きるでしょう。

*6 区別のためにKotlin/JVM、Kotlin/JS、Kotlin/Nativeと記述することがあります

第 1章 Kotlinについて知る 7

⾼階関数
Kotlinでは⾼階関数がサポートされています。⾼階関数は関数オブジェクトを
引数にしたり、戻り値にしたりできます。リスト 1.1に例を⽰します。

リスト 1.1: ⾼階関数の例

// bodyという名前の引数に関数オブジェクトを渡している
fun <T> lock(lock: Lock, body: () -> T): T {

lock.lock()

try {

// 引数で渡された関数オブジェクトを実⾏している
return body()

}

finally {

lock.unlock()

}

}

ラムダ式
ラムダ式を使うと関数を宣⾔せずに関数オブジェクトをすぐに⽣成できます。
リスト 1.2のコードは⾼階関数の例ですが、第⼆引数に注⽬してください。第⼆
引数にはラムダ式で a、b の引数をとり、⽐較結果を返すという関数オブジェク
トが記述されています。

リスト 1.2: ラムダ式の例

max(strings, { a, b -> a.length < b.length })

第 1章 Kotlinについて知る 8

1.4 将来の展望
2017年 5⽉現在、Kotlinの国内外においての利⽤は Androidアプリが主に多

く、次にサーバーサイドの開発でも広く利⽤されています（実例については、「導
⼊事例」の節をご参照下さい）。そういった現状から Kotlinはどのように発展し
ていくのでしょうか。

JetBrainsとして将来の展望
Kotlinを開発する JetBrains社は、今後もモダンな⾔語機能を提供しつつマル
チプラットフォーム開発を実現させることを⽬標としています。
具体的には Android、iOS、サーバーサイド、Webフロントエンド、ネイティ
ブなど各種プラットフォーム開発を⽬指しています。

Androidと Kotlin

Google I/O 2017で、Kotlinを Androidの開発⾔語として公式にサポートす
ることが発表されました。さっそく、developer.android.comには Kotlinの
ページが登場しています*7。
Googleと JetBrainsは協⼒し、Kotlinを開発するための⾮営利団体を設⽴する

ことも同時に発表され、Androidにおける Kotlinサポートの本気度が伺えます。
Kotlinを公式にサポートした理由として、同カンファレンスのキーノートにお
いて次のように挙げています。

� Kotlinは Javaとの相互運⽤が可能である
� IDE 開発元と同じチームが開発しており、素晴らしい IDE サポートを受
けることが可能である

� ⾔語が成熟し製品版としてリリース可能であり、すでに多くの導⼊事例が
ある

*7 https://developer.android.com/kotlin/index.html

第 1章 Kotlinについて知る 9

「Kotlin が Android で使えなくなるかもしれない」といった将来的な不安要
素が無くなった今、ますます Android での Kotlin 利⽤は増えていくでしょう
（Googleとしては Javaと C++もこれまでと変わらずサポートし、Kotlinは追
加でのサポートとしています）。
推測の域ではありますが、今後どうなっていくかを考えてみましょう。公式⾔
語となったことで、Android開発者にとっては IDEレベルでのさらなるサポート
やツールの改善などが増え、開発の強⼒な味⽅となってくれると予想しています。
Kotlinを使いこなせるプログラマーの需要が⾼まることもあるかもしれません。

1.5 導⼊事例
海外における導⼊事例
Google I/O 2017 の開発者向けキーノートにおいて Kotlin の製品版導⼊事例

として、次の 4つの Androidアプリが紹介されました。

� Flipboard*8

� Pinterest*9

� Square Cash*10

� Expedia*11

また、Kotlin公式サイトによると、EvernoteのAndroidクライアントはKotlin

への移⾏をすすめており*12、Trelloの Androidアプリにおいても 2016年の 12

⽉より製品版に Kotlinを導⼊*13しています。

*8 https://play.google.com/store/apps/details?id=flipboard.app

*9 https://play.google.com/store/apps/details?id=com.pinterest

*10 Square Cashは⽇本国内では利⽤できません
*11 https://play.google.com/store/apps/details?id=com.expedia.bookings

*12 https://blog.evernote.com/tech/2017/01/26/android-state-library/

*13 https://twitter.com/danlew42/status/809065097339564032

https://play.google.com/store/apps/details?id=flipboard.app
https://play.google.com/store/apps/details?id=com.pinterest
https://play.google.com/store/apps/details?id=com.expedia.bookings
https://blog.evernote.com/tech/2017/01/26/android-state-library/
https://twitter.com/danlew42/status/809065097339564032

第 1章 Kotlinについて知る 10

⽇本国内における導⼊事例
株式会社サイバーエージェントが提供する「FRESH!*14」というサービスで

は、Androidクライアント*15とサーバーサイドにおいて Kotlinを導⼊していま
す。特に Androidクライアントは 2015年の 3⽉の開発当初から本書の筆者であ
る藤原と荒⾕によって Kotlinで開発され、製品版としてリリースしています。ま
た、同社が提供する「famchatty*16」の Androidクライアントも Kotlinによっ
て開発され、同社グループ企業である AWA株式会社が提供する「AWA*17」の
Androidクライアントは Kotlinへの移⾏を進めています。
本書執筆陣による Kotlinでの開発事例は他にもあり、⼭本の所属する Sansan

株式会社が提供する「Eight*18」、⼋⽊が開発部⻑を務める株式会社トクバイが提
供する「トクバイ*19」、⻑澤の所属するエムスリー株式会社の「MR君」はいず
れも Kotlinで開発されています。株式会社 i-plugの提供する「O�erBox*20」の
Androidアプリは本書執筆陣のきの⼦によって Kotlinで 2017年 5⽉にリニュー
アルされました。
また、次のような会社で Kotlinは導⼊されています。

� Retty株式会社「Retty*21」
� 株式会社エウレカ「Pairs*22」
� 株式会社コンセプト*23

� 株式会社 FOLIO*24（導⼊予定）

*14 https://freshlive.tv/

*15 https://play.google.com/store/apps/details?id=jp.co.cyberagent.valencia

*16 https://play.google.com/store/apps/details?id=jp.co.cyberagent.malaga

*17 https://play.google.com/store/apps/details?id=fm.awa.liverpool

*18 https://play.google.com/store/apps/details?id=net.eightcard

*19 https://play.google.com/store/apps/details?id=jp.co.tokubai.android.

bargain

*20 https://play.google.com/store/apps/details?id=jp.offerbox

*21 http://engineer.retty.me/entry/retty-to-kotlin

*22 https://developers.eure.jp/tech/pairs-meets-kotlin/

*23 http://qiita.com/omochimetaru/items/98e015b0b694dd97f323

*24 https://folio-sec.com/

https://freshlive.tv/
https://play.google.com/store/apps/details?id=jp.co.cyberagent.valencia
https://play.google.com/store/apps/details?id=jp.co.cyberagent.malaga
https://play.google.com/store/apps/details?id=fm.awa.liverpool
https://play.google.com/store/apps/details?id=net.eightcard
https://play.google.com/store/apps/details?id=jp.co.tokubai.android.bargain
https://play.google.com/store/apps/details?id=jp.co.tokubai.android.bargain
https://play.google.com/store/apps/details?id=jp.offerbox
http://engineer.retty.me/entry/retty-to-kotlin
https://developers.eure.jp/tech/pairs-meets-kotlin/
http://qiita.com/omochimetaru/items/98e015b0b694dd97f323
https://folio-sec.com/

第 1章 Kotlinについて知る 11

� フラー株式会社「Joren *25」

*25 https://joren.io/ja/

https://joren.io/ja/

第 1章 Kotlinについて知る 12

表 1.1 Release history

Version Release Note

M1 2012/04/12 IntelliJの公式プラグインとして Kotlinが登場した
M2 2012/06/11 !! assert not null, invoke()

M3 2012/09/20 data class, Enum, Annotationの改善, sureの削除
M4 2012/12/11 Tuple の削除, data class のコピー, 型推論やコード

補完等の IDE⾯での⼤幅な改善
M5 2013/02/04 デフォルト name spaceの変更, 内部クラスは static

に, Floatリテラル
M6 2013/08/12 Android Studio サポート, SAM 変換, Annotation

が Enumと可変⻑引数対応
M7 2014/03/20 inline関数
M8 2014/07/02 Standard Libraryの強化 (Slice, Join, etc), JSでも

Data classが使⽤可能に
M9 2014/10/15 Incremental build, platform type, local object の

削除
M10 2014/12/17 Rei�ed type parameters, JSの改善 (Dynamic, An-

notation)

M11 2015/03/19 複数コンストラクター, init, companion object,

kotlin-android-extension

M12 2015/05/29 kapt1, trait->interface, [interface 継承, class ob-

ject, break, continue]の削除
M13 2015/09/16 lateinit, seald, デフォルトスコープが public に,

Javaの getter, setterサポート
M14 2015/10/01 operator, const

1.0-beta1 2015/10/22 in�x, Javaとの互換性意識
1.0-beta2 2015/11/16 Collection library, IntRangeの改善等
1.0-beta3 2015/12/07 ⾔語の bug�x: when ⽂での or ⽂変更, Enum の

values()削除, android kotlin pluginの統合
1.0-beta3 2015/12/22 Incremental compile改善, overloadの解決アルゴリ

ズム改善, (R) -> Tで Rのプロパティ参照
1.0-RC 2016/02/04 リリースに向けての最終調整
1.0 2016/02/15 正式リリース, Spring Bootのサポート
省略
1.0.4 2016/09/22 kapt2

1.0.6 2016/12/27 kapt3

省略
1.1.0 2017/03/01 coroutine, typealias

13

第 2章

Kotlinを学ぶ

本章では、Kotlinの⽂法や機能をコードを交えながら具体的に解説しま
す。とは⾔っても、詳細には⽴ち⼊りません。眺めるだけでなんとなく理
解できるように努めました。

2.1 環境構築から HelloWorldまで
この節では、実際に Kotlinを動作させて試してみます。
Kotlinを試してみるにはいくつかの⽅法がありますが、本書では次の 2つを紹
介します。

� Web上の実⾏環境である try.kotlinlang.orgで試してみる⽅法
� Android Studio上で Kotlin環境を構築して動作させてみる⽅法

try.kotlinlang.orgを使う
Kotlinを試してみる⼀番⼿っ取り早い⽅法は、ブラウザー上で https://try.

kotlinlang.orgにアクセスしてみることです（図 2.1）。

https://try.kotlinlang.org
https://try.kotlinlang.org
https://try.kotlinlang.org

第 2章 Kotlinを学ぶ 14

図 2.1 https://try.kotlinlang.org

try.kotlinlang.orgはWeb上のKotlin実⾏環境です。このページにアクセスす
るとまず"Hello, world!"のサンプルプログラムが表⽰されます（リスト 2.1）。

リスト 2.1: Hello, world! by Kotlin

fun main(args: Array<String>) {

println("Hello, world!")

}

https://try.kotlinlang.org

第 2章 Kotlinを学ぶ 15

ページの右上の「▶ Run」と書かれたボタンを押してみましょう。すると、こ
のプログラムが実⾏され画⾯下部のコンソール部分に

Hello, world!

と出⼒されます。

Kotlinの Hello world!

このたった３⾏の"Hello, world!"プログラムですが、Kotlinは Javaに⽐べ
てシンプルにプログラムを記述できることが分かるでしょう。⽐較のためリスト
2.2に、Javaの HelloWorldプログラムを載せてみます。

リスト 2.2: Hello world! by Java

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello World!");

}

}

■トップレベルの関数 Javaの場合、エントリーポイントとなる mainメソッド
を定義するためには、まず何かしらのクラスを定義して、その staticメソッド
として mainメソッドを定義する必要がありました。⼀⽅ Kotlinの場合は、トッ
プレベルに関数を定義することができます。

■関数定義は funで始まる すでにお気づきだと思いますが、Kotlinの main関
数は funというキーワードで始まっています。これはトップレベルの関数でも、
クラスのメソッドでも同じ決まりです。

第 2章 Kotlinを学ぶ 16

■引数の型は後ろに main関数の引数は args: Array<String>のように定義
されています。これは argsという名前で、引数の型が Array<String>（String

の配列）であることを⽰しています。このように Kotlinでは、引数や変数を定義
する場合にはまずその名前を定義し、その後に:（コロン）に続けて型を定義する
⽅式をとります。

■戻り値の型を省略可能 main関数には戻り値の型の指定がありません。Kotlin
では、意味のある戻り値がない関数やメソッド（Java でいう void 型のメソッ
ドに相当）の戻り値の型は Unit型と定義され、その記述は省略することができ
ます。
この関数に戻り値の型を明⽰的に指定する場合には、リスト 2.3のような指定

になります。

リスト 2.3: 戻り値の型の指定がある場合

fun main(args: Array<String>): Unit{

println("Hello, world!")

return Unit

}

関数やメソッドの戻り値の型も引数や変数と同じように、関数宣⾔の後ろに:に
続けて定義するようにします。ここでは main 関数の戻り値の指定は Unit 型と
なり、この関数の中では Unit型のシングルトンオブジェクトを返しています。

■セミコロンなし println("Hello, world!")の⽂末には;（セミコロン）が
ありません。Kotlinでは⽂末の;は不要です。

Kotlinのコードを書いてみる
では、この try.kotlinlang.orgを使って、もう少し Kotlinの機能ををつかった

コードを書いてみましょう。もとの Hello, world!のコードをリスト 2.4 のよ
うに変更してみます。

リスト 2.4: args を出⼒する

https://try.kotlinlang.org

第 2章 Kotlinを学ぶ 17

fun main(args: Array<String>) {

println("Hello, ${args[0]}!")

}

ここで「▶ Run」ボタンを押して実⾏すると

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 0

at Simplest_versionKt.main(Simplest version.kt:7)

とエラーが出⼒されてしまいます。このコードを正しく実⾏するためには
図 2.2 のように、Program arguments の欄に何かしらの⽂字列（ここでは
"Kotlin"という⽂字列）を指定します。

図 2.2 プログラム引数を指定

そして「▶ Run」ボタンを押して実⾏すると

Hello, Kotlin!

と Program argumentsで指定した⽂字列が出⼒されました。

第 2章 Kotlinを学ぶ 18

■String テンプレート リスト 2.4 で使った機能は、Kotlin の「String テンプ
レート」という機能です。⽂字列中に$（ドル記号）とともに変数や式を挿⼊する
と、それを評価した値を⽂字列と連結してくれます。リスト 2.5は単独の変数 i

を使⽤した例です。

リスト 2.5: 単独の変数を使った例

val i = 42 // 変数 iに 42を代⼊
val s = "すべての答え:$i" // -> すべての答え:42

リスト 2.5の val i = 42の⽂では変数の宣⾔と代⼊を⾏っています。valで
宣⾔された変数は、それが再代⼊が不可（読み取り専⽤）な変数であることを表
します。変数 iには 42という値を代⼊していますが、42は Int型のリテラルで
あるため、変数 iの型も Int型である、と推論されています。そして次の⾏の変
数 sには変数 iの値が含まれた⽂字列が代⼊されます。変数 sの型は String型
と推論されます。
さらにリスト 2.6のように、$の後ろに{}（波括弧）をつけ、そこに何かしらの
値を出⼒する式や、オブジェクトのプロパティなどを記述することでシンプルな
変数だけでなく、もう少し複雑な式も⽂字列に含めることができます。

リスト 2.6: 複雑な式を使った例

val s1 = "1 + 1は${ 1 + 1 }です。" // 1 + 1は 2です。
val s2 = "s1の⻑さは${s1.length}です。" // s1の⻑さは 10です。

リスト 2.4のコードも、この機能をつかって記述しています。

■コラム: タイトル
この try.kotlinlang.org では Hello, world!のサンプルプログラムの他に、

https://try.kotlinlang.org

第 2章 Kotlinを学ぶ 19

次のコード群が含まれています。

� Kotlinの⽂法サンプル
�「Kotlin Koans」というチュートリアル（第 3章 1節参照）
�「Kotlin in Action」という Kotlin ⼊⾨書（英語）のサンプルプログ
ラム

Kotlin の学習にとても役⽴つものになっています。ぜひ試してみてくだ
さい。

Android Studio上に Kotlin環境を構築して動作させる
次に、すでにインストールされている Android Stdio に対して Kotlinの環境
を構築し、実際に Kotlinで Androidのアプリを実装して動作させるまでのコー
ドを説明します。⼤まかの⼿順は次のとおりです。

1. Android Studioに Kotlinプラグインをインストール
2. 新規 Androidアプリのプロジェクトを作成
3. Javaのソースコードを Kotlinに変換

ここでは

� Android Studio 2.3.2

を対象に環境の構築していきたいと思います。

第 2章 Kotlinを学ぶ 20

プラグインのインストール
Android Studioで Kotlinを使⽤するには、Kotlinプラグインをインストール

する必要があります*1。プラグインのインストールは次の⼿順で⾏います。

� プラグインをインストールするには Android Studio のメニューから
[Android Studio] -> [Preference]を選択

� Android Studio設定ダイアログを表⽰（図 2.3）
� 設定メニューから [Plugins]を選択し、Plugin管理設定を開く

図 2.3 Android Studio設定ダイアログ

� Plugin 管理設定にて [Install JetBrains plugin…] ボタンをクリックし
Browse JetBrains Plugins選択ダイアログ（図 2.4）を開く

*1 Android Studio の 3.0 以降のバージョンでは Kotlin が標準でバンドルされているため、こ
の⼿順は必要ありません

第 2章 Kotlinを学ぶ 21

� Browse JetBrains Plugins選択ダイアログの検索窓から Kotlinと⼊⼒し
Kotlinプラグインを選択

� Kotlinプラグインの Installボタンをクリックし Kotlinプラグインをイン
ストール

図 2.4 Browse JetBrains Plugins選択ダイアログ

� インストールが完了したら [Restart Android Studio]ボタンをクリックし
Android Studioを再起動

お疲れ様でした。これで Android Studioで Kotlinを書く準備ができました。

サンプルアプリケーションの作成
次に⼟台となる Androidアプリケーションを作成します。
Android Studioのメニューから [File] -> [New] -> [New Project...]を選択し

第 2章 Kotlinを学ぶ 22

て、新規プロジェクト作成ウィザードを開始します。

図 2.5 アプリーケーション名の⼊⼒

適当なアプリケーション名を指定したら Target Device と Minimum SDK

バージョンを指定します。ここでは Target Device に [Phone and Tablet] を指
定し、Minimum SDK バージョンは API 15 を指定しています。Kotlin を使⽤
するにあたって、Minimum SDKバージョンは特に制約はありません。最⼩バー
ジョンである API 9から使⽤できます。

第 2章 Kotlinを学ぶ 23

図 2.6 Target Deviceを SDKバージョンの指定

次に、Activity の指定ではもっともシンプルな [Empty Activity] を選択し
ます。

図 2.7 Activityの選択

第 2章 Kotlinを学ぶ 24

最後に Activity のクラス名を指定して、新規プロジェクトの作成は完了しま
す。ここは規定値の MainActivityのままにしておきます。

図 2.8 Activity名の設定

これで⼟台となる Androidアプリケーションが作成されました。

Javaファイルの Kotlinへのコンバート
ここでは、作成した Androidのアプリケーションの Javaコードを Kotlinに変

換していきます。
Android Studioにて MainActivityのファイルを開いている状態で、メニュー
から [Code] -> [Convert Java File to Kotlin File] を選択しファイルを Kotlin

に変換します。

第 2章 Kotlinを学ぶ 25

図 2.9 Convert Java File to Kotlin Fileメニューの選択

これで Javaのファイルを Kotlinに変換できました。
しかし、この状態では Android アプリケーションのプロジェクトでの Kotlin

の設定ができていないため

Kotlin not con�gured

のメッセージが表⽰されますので、このメッセージからプロジェクトに対
して Kotlin の設定を⾏います。まず [Con�gure] のボタンを選択し、[Choose
Con�gurator]のメニューはそのまま [Android with Gradle]を選択します。

第 2章 Kotlinを学ぶ 26

図 2.10 Kotlin not con�guredのメッセージからの設定

その次の [Con�gure Kotlin in Project]ダイアログでは

All modules containing Kotlin �les: app

を選択し、

Kotlin conpiler and runtime version:

は、先ほどインストールしたプラグインと合わせるため 1.1.2-3 を選択し
ます。

図 2.11 Con�gure Kotlin in Projectダイアログ

これで Androidプロジェクトの設定は完了しました。

第 2章 Kotlinを学ぶ 27

Kotlinで書かれた Activityクラス
では、早速 Kotlinに変換されたコードを⾒ていきましょう。Android Studio

によって変換された結果、リスト 2.8のようなコードができあがっているはずで
す。⽐較のために Javaで書かれたコード（リスト 2.7）も載せておきます。

リスト 2.7: Java で書かれたMainActivityクラス

1: package example.com.firstkotlinapp;

2:

3: import android.support.v7.app.AppCompatActivity;

4: import android.os.Bundle;

5:

6: public class MainActivity extends AppCompatActivity {

7:

8: @Override

9: protected void onCreate(Bundle savedInstanceState) {

10: super.onCreate(savedInstanceState);

11: setContentView(R.layout.activity_main);

12: }

13: }

リスト 2.8: Kotlinに変換されたMainActivityクラス

1: package com.example.firstkotlinapp

2:

3: import android.support.v7.app.AppCompatActivity

4: import android.os.Bundle

5:

6: class MainActivity : AppCompatActivity() {

7:

8: override fun onCreate(savedInstanceState: Bundle?) {

9: super.onCreate(savedInstanceState)

10: setContentView(R.layout.activity_main)

11: }

12: }

第 2章 Kotlinを学ぶ 28

このコードを⾒てみると、さらに Kotlinの特徴的な仕様が⾒えてきます。

■クラス定義 ここでははじめてクラスの定義が出てきます。クラスの定義は
Javaと同様に classのあとにクラス名を宣⾔します。また、その後ろに:に続け
て継承元のクラスを記述します。class の前に何も指定しない場合は、public

スコープなクラスとなります。

■クラスのメソッド 8⾏⽬の onCreate()は、このクラスのメソッドです。関
数のときと同じように fun を使って定義します。Java の場合にオーバーライド
するメソッドは、@Overrideというアノテーションをつけていましたが、Kotlin
でも overrideという修飾⼦を funの前に付ける必要があります。

■Null許容型 また、onCreate()メソッドの引数は Bundle?型である、と定義
されています。この Bundle の後ろにある?は Null 許容型であることを⽰しま
す。Null許容型であるということはこの変数には nullが⼊り得るということで
す。詳細は後述します。

2.2 Kotlinの味⾒
基本⽂法
変数の宣⾔
変数の宣⾔のキーワードは 2つあります。valと varです。次のように宣⾔し
ます。

リスト 2.9: 変数の宣⾔

val num : Int = 1

var num2 : Int = 2

明⽰的に型を宣⾔するには、変数の後ろに:と型名をつける必要があります。

第 2章 Kotlinを学ぶ 29

Intは Kotlinの数値型です。
valは変数の再代⼊ができません。varの場合は、変数の再代⼊が可能です。

リスト 2.10: val への再代⼊ (コンパイルエラー)

val num : Int = 1

num = 2 // =>コンパイルエラー

リスト 2.11: var への再代⼊

var num2 : Int = 2

num2 = 3 // =>コンパイルエラーにならない

型の省略
先ほどの val num :Int = 1 の場合、実は型の宣⾔が省略可能です。型の省
略が可能なのは右辺が 1なので、Int型であるとコンパイラーが推論しているた
めです。

リスト 2.12: 型の省略

val num = 1

型を省略できるのは便利ではありますが、開発者同⼠で分かりにくい場合は明
⽰的に宣⾔する⽅がよいでしょう。

条件判定（if⽂）
条件判定には if⽂を使います。

リスト 2.13: Java の if ⽂のような使い⽅

第 2章 Kotlinを学ぶ 30

if(true) {

println("true")

}

リスト 2.13のように、Javaなどの if⽂と同じような使い⽅ができます。if

⽂としてだけでなく、if式としても扱うことができます。「式」と書いたとおり、
Javaの if⽂とは違い if式は評価されて値となります。

リスト 2.14: String を返す if 式 2

val result : String = if(true) {"true"} else { "false" }

println(result) // =>true

リスト 2.14 のように評価結果の値を受け取り、変数に代⼊することも可能で
す。else 節がある場合に、この if は式として扱われます (else 節のない場合
は、値を返さない Javaと同じような if⽂として扱われます)。

条件判定（when式）
when 式は、Java でいう switch ⽂のような役割を果たします。if 式と同様

に、when式⾃体は評価され値となります。

リスト 2.15: when 式 1

val value = 1

val str = when(value) {

1-> "one"

2-> "two"

else -> "other"

}

条件のうち、必ずどれか 1 つに⼀致する必要があります。たとえば、リスト

第 2章 Kotlinを学ぶ 31

2.15の場合は 1か 2以外の数値の場合もありえるので、elseがないとコンパイ
ルエラーとなります。
左側を条件式にすることも可能です。

リスト 2.16: when 式 2

val value = 1

when {

value == 1-> println("one")

value == 2-> println("two")

else -> println("other")

}

for⽂
for⽂はリスト 2.17のように記述します。

リスト 2.17: for ⽂ 1

val array: Array<Int> = arrayOf(1, 2, 3, 4, 5)

for (i in array) {

print(i) // =>12345

}

arrayOfは Kotlinの標準の関数です。この場合は、Array<Int>型のオブジェ
クトを⽣成しています。その他にもコレクション⽣成の関数が揃っています。

� mapOf：マップを⽣成する関数
� listOf：リストを⽣成する関数
� setOf：セットを⽣成する関数

その他にも Rangeを使った書き⽅も可能です。

リスト 2.18: for ⽂ 2

第 2章 Kotlinを学ぶ 32

for (i in 0..4) {

print(i) // =>01234

}

downTo という標準の関数を使うことで、逆順のループも簡単に⾏うことがで
きます。

リスト 2.19: for ⽂ 3

for (i in 4 downTo 0) {

print(i) // =>43210

}

while⽂、do-while⽂
Javaと同じく、while⽂や do-while⽂も利⽤可能です。

リスト 2.20: while

var i = 0

while (i < 10) {

print(i++) // => 0123456789

}

リスト 2.21: do-while

var i = 0

do {

print(i++) // => 0123456789

} while(i < 10)

第 2章 Kotlinを学ぶ 33

Null安全
Null不許容型と Null許容型
Kotlinにおける通常の型は nullの代⼊を許容しません。

リスト 2.22: Null 不許容型

var a: String = "abc"

a = null // => コンパイルエラー

nullを代⼊するには、型の後ろに?をつけて定義します。

リスト 2.23: Null 許容型

var b: String? = "abc"

b = null // => OK

このように、コンパイル時に nullの代⼊が許容されるかの判断がなされるた
め、アプリケーション実⾏時における null参照に対するメンバーアクセスによ
る例外（Javaでの NullPointerException）を防ぐことができます。
Kotlin に お い て NullPointerException が 発 ⽣ す る の は 、throw

NullPointerException() などのように明⽰的に発⽣させる場合か、後
述する!!演算⼦を使⽤した場合などに限られます*2。
上記のように実⾏時にプログラマーの意図しない箇所で NullPointerException

が発⽣することがほぼないため、Kotlin は Null 安全な⾔語ということができ
ます。

*2 nullが原因となるエラーを起こす⽅法は他にもありますが、本書のスコープ外として割愛しま
す

第 2章 Kotlinを学ぶ 34

Nullチェックと安全な呼び出し
Null 許容型のメソッドやプロパティを参照するとコンパイルエラーとなり
ます。

リスト 2.24: Null 不許容型への参照

var a: String = "abc"

val l : Int = a.length // => OK

リスト 2.25: Null 許容型への参照

var b: String? = "abc"

val l : Int = b.length // => コンパイルエラー

Null許容型のメソッドを呼び出すためには、事前に ifを⽤いて nullでない
ことをチェックします。

リスト 2.26: Null 許容型のメソッド呼び出し

var b: String? = "abc"

val l : Int = if(b != null) b.length else -1

?演算⼦を使えば、Null許容型のメソッドやプロパティを参照することができ
ます。

リスト 2.27: Null 許容型への安全な参照

val l : Int? = b?.length

第 2章 Kotlinを学ぶ 35

ただし、bが nullの場合は lも nullとなるため、lの型は Null許容型であ
る Int?になっていることに注意してください。

エルビス演算⼦

リスト 2.28: Null 許容型のメソッド呼び出し

var b: String? = "abc"

val l : Int = if(b != null) b.length else -1

リスト 2.28のような ifによる nullチェックは?:演算⼦を⽤いて記述するこ
とができます。この演算⼦をエルビス演算⼦と呼びます。

リスト 2.29: エルビス演算⼦

val l : Int = b?.length ?: -1

bが nullの場合は lは-1となり、lの型は Null不許容型である Intとなり
ます。

!!演算⼦
!!演算⼦を⽤いれば、Null許容型を Null⾮許容型に無理やり変換します。

リスト 2.30: !!演算⼦

val l : Int = b!!.length

この場合 l は Int 型となります。b が null の場合は実⾏時に
NullPointerException が発⽣します。つまり!!演算⼦は危険な操作であ

第 2章 Kotlinを学ぶ 36

り、絶対に⼀⽣使わないくらいの気持ちでいるとよいでしょう。どうして
も Null ⾮許容型に変換しなくてはならない状況に直⾯したら、標準関数の
requireNotNullを使⽤することを検討してください。

関数
関数は funを使って定義します。

リスト 2.31: 関数名 add、引数 x と y、戻り値の型は Intの関数の定義

fun add(x: Int, y: Int): Int {

return x + y

}

引数はリスト 2.32のように定義します。

リスト 2.32: 関数の引数のフォーマット

変数名: 型

それぞれの引数はコンマで分けます。すべての引数は、型を明記しなくてはな
りません。
戻り値の型はブロックを書いた場合、定義しなくてはなりません。ただし、戻
り値の型が Unitだった場合はすでに⾒たとおり、省略することができます。
もし、関数がひとつの式で構成される場合、=を書いてブロックを省略すること
が可能です。

リスト 2.33: ブロックを省略する

fun add(x: Int, y: Int): Int = x + y

第 2章 Kotlinを学ぶ 37

さらに、コンパイラーが型推論をできるような戻り値の型であれば、戻り値の
型の定義を省略することも可能です。
リスト 2.34: 戻り値の型も省略可能

fun add(x: Int, y: Int) = x + y

関数の呼び出し⽅法は他の⾔語と似ています。
リスト 2.35: 関数の呼び出し⽅

val result = add(1, 2)

引数のデフォルト値の定義も可能です。型の定義の後に=を書いて定義します。
リスト 2.36: デフォルト値

fun toAddFormula(value: Int, num: Int = 1): String {

return "$value + $num"

}

このメソッドを呼び出すにはリスト 2.37のようにして呼び出します。
リスト 2.37: デフォルト値がある関数の呼び出し⽅

val result1 = toAddFormula(10) // "10 + 1"

val result2 = toAddFormula(15, 2) // "15 + 2"

リスト 2.38 は名前付き引数を利⽤した例です。名前付き引数は引数の順番を
変えても問題なく動きます。名前付き引数を使った場合、後に続く引数はすべて

第 2章 Kotlinを学ぶ 38

名前付き引数にしなくてはなりません。

リスト 2.38: 名前付き引数を使っての呼び出し⽅

val result3 = toAddFormula(value = 100) // "100 + 1"

val result4 = toAddFormula(num = 3, value = 1234) // "1234 + 3"

val result5 = toAddFormula(1000, num = 5) // "1000 + 5"

val result6 = toAddFormula(num = 4, 101) // コンパイルエラー
val result6 = toAddFormula(value = 12, 7) // コンパイルエラー

この機能の良いところは、たとえばリスト 2.39のような複数の同じ型のメソッ
ドを呼び出す場合、リスト 2.40のように効⼒を発揮します。

リスト 2.39: 複数の同じ型のメソッド

fun displayName(firstName: String,

lastName: String,

middleName: String) {

}

リスト 2.40: 複数の同じ型のメソッド

displayName("名前", "姓", "ミドルネーム")

// コンパイルは通るが挙動的に NG

displayName("名", "ミドルネーム", "姓")

// 明⽰的にすることにより間違いを減らすことが可能
displayName(lastName = "ことり", firstName = "ん", middleName = "K")

関数は型パラメータを扱うことも可能です。関数名の前に<>を使って宣⾔し
ます。

リスト 2.41: 型変数付き関数

第 2章 Kotlinを学ぶ 39

fun <T> singletonList(item: T): List<T> {

}

⾼階関数とラムダ式
Kotlinでは⾼階関数やラムダ式を扱うことができます。具体的な⽂法を⾒てい
きましょう。

⾼階関数
⾼階関数とは、関数オブジェクトを引数にしたり、戻り値にする関数です。リ
スト 2.42 に⽰す関数 lock は⾼階関数の例です。第⼆引数の body: () -> T

は、引数なしで戻り値に任意の型を取る関数を表します。この例では bodyとい
う具体的な処理を外に出すことによって、lock という関数名のとおりロックす
ることを⽬的とした関数を宣⾔し、汎⽤性が⾼くなります。

リスト 2.42: ⾼階関数の例

// bodyという名前の引数に関数オブジェクトを渡している
fun <T> lock(lock: Lock, body: () -> T): T {

lock.lock()

try {

// 引数で渡された関数オブジェクトを実⾏している
return body()

}

finally {

lock.unlock()

}

}

第 2章 Kotlinを学ぶ 40

ラムダ式
ラムダ式を使うと、関数を宣⾔せずに関数オブジェクトをすぐに⽣成すること
ができます。リスト 2.43は⾼階関数の例ですが、第⼆引数に注⽬してください。
第⼆引数にはラムダ式で a,bという 2つの引数をとり、⽐較結果を返すという関
数オブジェクトが記述されています。

リスト 2.43: ラムダ式の例

max(strings, { a, b -> a.length < b.length })

また、関数の引数の最後にラムダ式を渡している場合は、引数の外に出して、
リスト 2.44 のように記述することが可能です。ラムダ式内に複数⾏記述する場
合でも、簡潔に可読性の⾼いまま関数を記述することができます。

リスト 2.44: ラムダ式の外出し

max(strings) { a, b -> a.length < b.length }

インライン関数
実⾏時に関数オブジェクトを⽣成することは、メモリアロケーション等コスト
が⾼くなる場合があります。この問題を解決するために、インライン関数という
仕組みが⽤意されています。これを使⽤すると、コンパイル時に関数がインライ
ン展開されます。
具体例を⾒ていきましょう。リスト 2.42の関数の使⽤は次のようになります。

リスト 2.45: 関数の使⽤例

第 2章 Kotlinを学ぶ 41

lock(l) { foo() }

この関数をインライン関数にするには次のように inlineを付けるだけです。

リスト 2.46: インライン関数

inline fun lock<T>(lock: Lock, body: () -> T): T {

// ...

}

インライン展開されたコードは次のようになりますが、lock の使⽤者はこれ
を意識する必要はありません。

リスト 2.47: インライン展開されたコード

l.lock()

try {

foo()

}

finally {

l.unlock()

}

クラス
Kotlinは Java同様オブジェクト指向型の⾔語です。

クラスとインスタンス
クラスは classキーワードで定義することができます。

リスト 2.48: MyClass.kt

第 2章 Kotlinを学ぶ 42

class MyClass {

}

クラスにメンバ（プロパティやメソッド）がない場合、波括弧は省略できます。
リスト 2.49のコードはリスト 2.48のコードと同じ意味となります。

リスト 2.49: 波括弧を省略したMyClass.kt

class MyClass

定義したクラスはリスト 2.50のように記述することで、インスタンスを⽣成す
ることができます。Javaのような newキーワードは不要です。

リスト 2.50: インスタンス⽣成

val myClass = MyClass()

コンストラクターとイニシャライザー
先ほど紹介した MyClass ではコンストラクターを記述していませんが、この
場合デフォルトコンストラクターが⾃動で⽣成されます。明⽰的にコンストラク
ターを定義する場合、リスト 2.51のように記述します。

リスト 2.51: コンストラクター

class Person(name: String) {

}

リスト 2.51のように、クラス名の後ろに定義するコンストラクターをプライマ

第 2章 Kotlinを学ぶ 43

リーコンストラクターと呼びます。
アノテーションや可視性修飾⼦を付ける場合は、リスト 2.52 のように

constructorキーワードが必要となります。

リスト 2.52: constructorキーワード付きのプライマリーコンストラクター

class Person public @Inject constructor(name: String) {

// 処理
}

プライマリーコンストラクターには処理を記述することができません。インス
タンス⽣成時に⾏いたい初期化処理はイニシャライザーに記述します。イニシャ
ライザーは initキーワードで定義します。

リスト 2.53: イニシャライザー

class Person(name: String) {

init {

logger.info("name = ${name}")

}

}

コンストラクターを複数定義したい場合、セカンダリーコンストラクターを
定義する必要があります。セカンダリーコンストラクターは constructorキー
ワードを利⽤してリスト 2.54のように記述します。また、次のコードでは this

キーワードを使⽤しプライマリーコンストラクターを呼び出しています。

リスト 2.54: セカンダリーコンストラクター

class Person(val name: String) {

constructor(name: String, parent: Person) : this(name) {

// 処理
}

}

第 2章 Kotlinを学ぶ 44

リスト 2.54のコードでは、プライマリーコンストラクターの引数に valキー
ワードを⽤いてプロパティを作成していますが、プロパティについては後ほど説
明します。

メソッド
クラス内に関数を記述することでメソッドを定義することができます。

リスト 2.55: メソッド

class Greeter {

fun greet(name: String) {

println("Hello, $name!")

}

}

リスト 2.56のように呼び出すことができます。

リスト 2.56: メソッドの呼び出し

val greeter = Greeter()

greeter.greet("Kotlin") // 「Hello, Kotlin!」と出⼒される

プロパティ
プロパティはリスト 2.57のように var, valキーワードで記述することができ
ます。varは変更可能プロパティ、valは変更不可能な読み取り専⽤プロパティ
です。

リスト 2.57: プロパティ

第 2章 Kotlinを学ぶ 45

class Person {

var name: String = ""

}

上記リスト 2.57のコード相当の処理を Javaで書くと、リスト 2.58のように
なります。

リスト 2.58: プロパティを Java で記述した場合

final class Person {

private String name;

public String getName() {

return name;

}

public String setName(String name) {

this.name = name;

}

}

Kotlinのプロパティには、⾃動的にバッキングフィールドと呼ばれるものが⽣
成され、実際の値はそこに格納されます。要は var, val キーワードでフィール
ドのように記述をするだけで、getter, setter付きのフィールドが⾃動⽣成される
ということです（valは読み取り専⽤なので getterのみ）。
プロパティにアクセスするには、リスト 2.59のようにフィールドを呼び出す感
覚で記述します。

リスト 2.59: プロパティへのアクセス

val taro = Person()

taro.name = "たろう"

println(taro.name) // 「たろう」と出⼒

第 2章 Kotlinを学ぶ 46

⾃分で getterと setterを定義することもできます。これをカスタムゲッター、
カスタムセッターと呼びます。カスタムゲッターを定義した場合はバッキング
フィールドは⽣成されません。

リスト 2.60: カスタムゲッター・カスタムセッター

var stringRepresentation: String

get() = this.toString()

set(value) {

setDataFromString(value) // ⽂字列をパースして他のプロパティへ
値を代⼊する

}

lateinitキーワード
プロパティは必ず初期化する必要があります。しかし、DI（Dependency

Injection）*3を利⽤している場合などは、インスタンス⽣成時に値を設定するこ
とはできません。そういった場合、lateinitキーワードで初期化を遅らせるこ
とができます。

リスト 2.61: lateinit

class MyClass {

lateinit var foo: String

}

lateinitは varでしか利⽤できないため、初期化後に変更される可能性があ
ります。また、初期化される前にアクセスすると例外が発⽣します。取扱には⼗
分に注意しましょう。

*3 デザインパターン（設計思想）の⼀種。Androidで DIを利⽤したい場合、Dagger2というラ
イブラリーが有名です

第 2章 Kotlinを学ぶ 47

オブジェクト
classの代わりに objectキーワードを使うことにより、インスタンスが必ず

1つしか⽣成されない、シングルトンなクラスを定義できます。

リスト 2.62: オブジェクト

object DataProviderManager {

fun registerDataProvider(provider: DataProvider) {

// ...

}

}

オブジェクトに定義したメソッドを呼び出すには、インスタンスの⽣成処理を
記述せずクラス名から直接メソッドを参照します。

リスト 2.63: オブジェクトの参照

DataProviderManager.registerDataProvider(...)

コンパニオンオブジェクト
Kotlinでは Javaのようにクラスに staticなメンバを定義することができま

せん。static のようにインスタンス⽣成をしなくても利⽤できるメンバを定義
するためには、コンパニオンオブジェクトを定義します。

リスト 2.64: コンパニオンオブジェクト

class MyClass {

companion object Factory {

fun create(): MyClass = MyClass()

}

}

第 2章 Kotlinを学ぶ 48

コンパニオンオブジェクトに定義したメンバを使⽤するには、次のようにクラ
スから直接参照します。

リスト 2.65: コンパニオンオブジェクトのメンバ参照

val instance = MyClass.create()

継承
open修飾⼦がついているクラスについては:で継承することができます。

リスト 2.66: 継承

open class Person(val name: String)

class Student(name: String, val id: Long): Person(name)

この場合、Person がスーパークラスで、Student がサブクラスとなります。
スーパークラスに openがついていない場合はコンパイルエラーとなるので注意
が必要です。多重継承はできないため、スーパークラスは 1 つしか定義するこ
とができません。また、リスト 2.66のコード例では Studentで受け取った引数
nameを、Personのプライマリーコンストラクターに渡しています。
また、スーパークラスの open修飾⼦がついているメンバをサブクラスの同じ
名前のメンバでオーバーライド（上書き）できます。上書きする側のメンバには
override修飾⼦をつけます。

リスト 2.67: オーバーライド

第 2章 Kotlinを学ぶ 49

open class Person(val name: String) {

open fun introduceMyself() {

println("I am $name.")

}

}

class Student(name: String, val id: Long): Person(name) {

override fun introduceMyself() {

println("I am $name. (id=$id) ")

}

}

これを実⾏すると、リスト 2.68の結果になります。

リスト 2.68: オーバーライドの実⾏例

val student: Student = Student("きの⼦", 728)

student.introduceMyself() // 「I am きの⼦. (id=728)」を出⼒

インターフェース
interfaceキーワードで、インターフェースを定義することができます。

リスト 2.69: インターフェース

interface MyInterface {

fun bar()

fun foo() {

// optional body

}

}

リスト 2.70のように実装することができます。

第 2章 Kotlinを学ぶ 50

リスト 2.70: インターフェースの実装

class Child : MyInterface {

override fun bar() {

// body

}

}

MyInterfaceにおいてメソッド barは処理が未定義であるため、Childでオー
バーライドして処理を実装する必要があります。foo メソッドは MyInterface

ですでに処理が実装されているため、改めて実装する必要はありません。
この Childのインスタンスの挙動はリスト 2.71のようになります。

リスト 2.71: インターフェースを実装したクラスの実⾏結果

val child = Child()

child.bar() // Child のオーバーライドした bar メソッドで定義されている処
理が実⾏される

child.foo() // MyInterface の fooメソッドで定義されている処理が実⾏され
る

継承と異なり、インターフェースはカンマで区切ることにより複数実装が可能
です。また、インターフェースにインターフェースを継承することもできます。

リスト 2.72: 複数のインターフェースの実装例

interface A

interface B

interface C: B // インターフェース Cにインターフェース Bを継承する

class D: A, C // クラス Dにインターフェース Aとインターフェース Cを実装する

インターフェースの匿名クラスを⽣成したい場合、オブジェクト式を利⽤する

第 2章 Kotlinを学ぶ 51

とインターフェースから匿名クラスを作成することができます。オブジェクト式
は object:を⽤いて記述します。

リスト 2.73: オブジェクト式による匿名クラス⽣成

interface Greeter {

fun greet()

}

val greeter = object: Greeter {

override fun greet() {

println("Hello")

}

}

パッケージ
Kotlin では、Java と同様パッケージによりクラスなどの要素を名前空間で区
切ることができます。パッケージを定義するには、ファイル先頭で packageキー
ワードを使⽤します。

リスト 2.74: パッケージの宣⾔

package sample.hoge

class Foo

これで Fooクラスは sample.hogeパッケージに属すことになり、異なるパッ
ケージからは sample.hoge.Foo という名前でアクセスする必要があります。
Java同様 importキーワードでインポートすることで、単純なクラス名でアクセ
スすることができます。

リスト 2.75: パッケージの宣⾔

第 2章 Kotlinを学ぶ 52

package sample.fuga

import sample.hoge.Foo

class Bar {

fun doSomethingGood() {

Foo() // インポートしているため、クラス名のみでアクセスできている
}

}

アクセス制限
可視性修飾⼦をつけることにより、パッケージのトップレベルに属する関数や
クラスなどの公開範囲を設定することができます。表 2.1 は「Kotlin スタート
ブック」[6]より引⽤した、トップレベルにおける可視性修飾⼦の⼀覧です。

表 2.1 トップレベルにおける可視性修飾⼦

修飾⼦ 公開範囲
public(デフォルト) 公開範囲に制限はなく、どこからでもアクセス可能です
internal 同⼀モジュール内に限り、全公開です
private 同⼀ファイル内のみ、アクセス可能です

internalの「同⼀モジュール」というのは、コンパイル単位、たとえばMaven

や Gradleの 1つのプロジェクトを指します。
クラス内のメンバについても可視性修飾⼦をつけることができます。表 2.2は

「Kotlinスタートブック」[6]より引⽤した、クラスにおける可視性修飾⼦の⼀覧
です。

データクラス
Android開発だけに限りませんが、情報を保持するためだけのクラスをよく作
成すると思います。こういったクラスでは保持するメンバーがわかりさえすれ

第 2章 Kotlinを学ぶ 53

表 2.2 クラスにおける可視性修飾⼦

修飾⼦ 公開範囲
public(デフォルト) 公開範囲に制限はなく、どこからでもアクセス可能です
internal 同⼀モジュール内に限り、全公開です
protected 同⼀クラス内と、サブクラス内からアクセス可能です
private 同⼀クラス内のみ、アクセス可能です

ば、getter、setterや toString()などのメソッドは標準的なものを⽣成すること
が可能です。Kotlinでは dataクラスとしてこのような機能を提供しています。
たとえば id、nameを持った Personクラスを定義してみます。

リスト 2.76: Person.kt

data class Person(val id: Long, var name: String)

dataクラスを定義するとコンパイラーが次のメソッドを⾃動で⽣成します。

� equals()/hashCode()

� toString()

� Person(id=100, name=Tarou)形式
� componentN()

� Nは 1から開始されるメンバー変数の順番。たとえば Personクラス
の component2()の場合、nameの値が戻り値となる

� copy()

� 特定のメンバー変数が同じのインスタンスを作成したい時に便利なメ
ソッド（リスト 2.77）

リスト 2.77: copy()の実装イメージ

第 2章 Kotlinを学ぶ 54

fun copy(id: Long = this.id, name: String = this.name): Person {

return Person(id, name)

}

そのため、リスト 2.76で定義した Personクラスはメソッドを書いていません
が、リスト 2.78のようにメソッドの呼び出しが可能です。

リスト 2.78: data class利⽤例

val person = Person(8000, "しらじ")

println(person.name) // しらじ
println(person.toString()) // Person(id=8000, name=しらじ)

val person2 = person.copy(id = 8001)

println(person2.toString()) // Person(id=8001, name=しらじ)

person2.name = "しらじのにせもの" // nameは varのため上書き可。idは val

のため上書き出来ない
println(person2.toString()) // Person(id=8001, name=しらじのにせもの)

println(person == person2) // false

val person3 = Person(8000, "しらじ")

println(person == person3) // true

dataクラスは素晴らしいですが、いくつか制限もあります。

� Primaryコンストラクターは少なくとも 1つの引数をもつ必要がある
� Primary コンストラクターのすべての引数は val か var で定義する必要
がある

� dataクラスは abstract、open、sealed、innerはつけられません
� 継承できるのは sealedクラスのみ。Interfaceの実装もできる

dataクラスは分解宣⾔（Destructuring Declarations）もサポートしています
（リスト 2.79）。分解宣⾔とはインスタンスを分解して⼀度にいくつかの変数に代
⼊できる機能です。

リスト 2.79: 分解宣⾔

第 2章 Kotlinを学ぶ 55

val person = Person(1, "⼆郎")

val (id, name) = person

println("id: $id - name: $name") // "id: 1 - name: ⼆郎"と表⽰される

Extension

拡張関数（Extension Function）
拡張関数とは任意の型（クラスやインターフェースなど）に対して外部から関
数を追加できる機能です。たとえば Stringなどのよく使われるクラスにこんな関
数があったら良いのに…と思ったことはありませんか？ 拡張関数ならそれが可能
です。

リスト 2.80: 拡張関数の追加

fun String.appendBeer() : String = "${this}beer!"

リスト 2.80 は拡張関数の実際の例です。関数を追加したい型を関数名の⼿前
に付け加えるだけです。その他は普通の関数の書き⽅と違いはありません。

リスト 2.81: 拡張関数の呼び出し

println("I like".appendBeer()) // => I like beer!

リスト 2.81 のように呼び出します。拡張関数は⾃由に型に対して関数を追加
することが可能なので、確かに便利なものなのですが乱⽤は禁物です。リスト
2.80のように有⽤でない（局所的にしか利⽤しない）関数などが増えると混乱を
招きます。ボイラープレートを減らせる、⽣産性に寄与するような、ここぞとい
う時のために定義するのを推奨します。

第 2章 Kotlinを学ぶ 56

拡張プロパティ（Extension Properties）
拡張プロパティも拡張関数と考え⽅は同じです。任意のクラスに対して外部か
らプロパティを追加できる機能です。

リスト 2.82: 拡張プロパティ

val <T> List<T>.lastIndex: Int

get() = size - 1

リスト 2.82は Kotlinに標準で実装されているものです。Listインターフェー
スに対してプロパティを追加しています。

リスト 2.83: 拡張プロパティの呼び出し

val arr = listOf(1,2,3)

println(arr.lastIndex) //=> 2

リスト 2.82 のように呼び出します。リストの最後のインデックスである 2 が
標準出⼒されます。メリット・デメリットは拡張関数と同様ですので割愛します。

拡張関数・拡張プロパティのスコープ

リスト 2.84: 拡張関数と拡張プロパティを定義したパッケージ

package a

fun String.extentionFun() = "it's cool operation"

val String.extentionProperty : String

get() = "something special"

リスト 2.84 のように package a で、拡張関数と拡張プロパティを宣⾔した

第 2章 Kotlinを学ぶ 57

場合、
リスト 2.85: 拡張関数と拡張プロパティの別パッケージからの呼び出し

package b

import a.extentionFun

import a.extentionProperty

fun main(args : Array<String>) {

"hoge".extentionFun()

"fuga".extentionProperty

}

リスト 2.85 のように別パッケージから拡張関数・拡張プロパティを呼び出す
には importが必要です。同⼀パッケージ内であれば import無しで拡張関数や
拡張プロパティが呼び出せます。たまに⾒る使われ⽅は、拡張関数のみ集めた kt

ファイルを作成し、拡張関数⽤の packageを作成しそれを明⽰的に importさせ
るような⼿法です。そうすることで、スコープを分けられ拡張関数を管理しやす
くなるようです。

その他
Kotlin には、⾯⽩く便利な機能がまだまだあります。それらを簡単に紹介し
て、この節を締めくくりたいと思います。

演算⼦オーバーロード
プログラミング⾔語で使⽤できる演算⼦を、新しい型にも適⽤できるようにす
る仕組みを演算⼦オーバーロードと⾔います。Kotlin では、演算⼦による計算
は、実際にはメソッドや拡張関数への呼び出しになる⽅式でこれを実現していま
す。使⽤できる演算⼦の種類はあらかじめ決められており、各演算⼦は決まった
シグネチャーのメソッド・拡張関数に対応します。たとえば、plusというメソッ
ドが定義されていれば、+という 2項演算⼦を使った計算を⾏えるわけです。
リスト 2.86: 演算⼦オーバーロード

第 2章 Kotlinを学ぶ 58

class MyInt(val value: Int) {

operator fun plus(that: MyInt): MyInt =

MyInt(value + that.value)

}

fun main(args: Array<String>) {

val sum: MyInt = MyInt(5) + MyInt(7)

println(sum.value) // 12

}

リスト 2.86では、独⾃に定義したクラス MyIntにメソッド plusを持たせて
います。修飾⼦ operatorが重要で、これをメソッドや関数に付けることで、対
応する演算⼦のオーバーロードが⾏えます。このメソッド plus の存在により
MyInt(5).plus(MyInt(7))と呼び出すべきところを、MyInt(5) + MyInt(7)

と呼び出すことも可能になります。
演算⼦とそれに対応するメソッドは、公式サイト*4で確認できます。

イコール
Java の参照型における==による⽐較は、Kotlin では===で⽐較します。この
⽐較は、同じ参照であるかどうかを⽐べているのはご存知かと思います。そのた
め、Javaではオブジェクトの中⾝が同じかどうかを調べる際には equalsメソッ
ドを使います。⼀⽅ Kotlin では、オブジェクトの中⾝が同じかどうかを==で調
べることができます。==も演算⼦オーバーロードのひとつであり、すなわちシン
タックスシュガーとなっています。a == bの式は a?.equals(b) ?: (b ===

null)と同じです。どういうことかというと、aが nullでない場合は、bを引数
にメソッド equalsを呼び出し、aが nullである場合は、bも nullなのかをテ
ストしています。

*4 http://kotlinlang.org/docs/reference/operator-overloading.html

http://kotlinlang.org/docs/reference/operator-overloading.html

第 2章 Kotlinを学ぶ 59

型エイリアス
型エイリアス（type alias）という機能を使うことで、既存の型に別名を与える
ことができます。別名を与えることで、⽤途がわかりやすくなったり、コードが
読みやすくなったりします。

リスト 2.87: 型エイリアスの例

typealias Name = String

fun hello(name: Name) {

println("Hello, $name!")

}

fun main(args: Array<String>) {

hello("Kotlin")

}

リスト 2.87でキーワード typealiasを⽤いて型 Stringに Nameという別名
を与えています。この宣⾔で Stringの代わりに Nameを使えるようになります。
あくまで別名であり Nameもまた Stringであることに注意をしてください。そ
のため、リスト 2.87のような使い⽅はイマイチかもしれません*5。
関数型に対して適切に別名を付ける使い⽅がお勧めです。はい、関数にも型が
あるのです。たとえば (T) -> Booleanという書き⽅をしますが、これは「任意
の型 Tを引数に取って、Booleanを返す関数」と読めます。このとき、短く⽤途
の分かる名前を付けてやると可読性が上がるでしょう（リスト 2.88）。

リスト 2.88: 関数型に別名を与える

typealias Predicate<T> = (T) -> Boolean

*5 この例では Name という新しい型を定義した⽅がよいかもしれません。そうすることで、名前
でない⽂字列をうっかり Name型の変数に代⼊するという事故を防ぐことができます

第 2章 Kotlinを学ぶ 60

2.3 Javaから Kotlinへの移⾏
本書を読んでいる⽅のほとんどは、普段は Javaを使って Androidアプリケー
ションを開発していると思います。Kotlin の学習を進めると同時に、現在の
Android アプリケーションにどのように Kotlin を適⽤していくかを考えていか
なければなりません。本節では Javaで書いている Androidアプリケーションを
どのように Kotlinに移⾏していくかを論じます。

相互互換性のある Kotlinと Java

Kotlin と Java は相互に互換性があります。つまり Kotlin から Java のクラ
スや関数を利⽤したり、Javaから Kotlinのクラスや関数を利⽤できます。Java
と Kotlinが混在した状態で開発できるので、Javaで書いている Androidアプリ
ケーションに、あとから Kotlin を導⼊することは難しくありません。もちろん
Kotlinから Javaを呼び出すとき、Javaから Kotlinを呼び出すときでそれぞれ
意識しなければならないことがあります。それらにかかるコストも鑑みて移⾏を
考えなければなりません。
このことから Kotlin に移⾏していくに当たって次のアプローチが考えられ
ます。

� 混在させる
� 境界を設ける
� 置き換える

これらは学習と適⽤のフェーズをどのように進めるのかという戦略の話になり
ます。それぞれにいくつかの具体的な⽅法があり、メリットとデメリットがあり
ます。

第 2章 Kotlinを学ぶ 61

混在させる
まずは単純に Java と Kotlin を混在させながら、徐々に Kotlin に移⾏してい
くケースを考えてみます。

新しいコードを Kotlinにする
これは今後の追加や変更の⼀部あるいはすべてをKotlinで書くというアプロー
チです。

■メリット 追加や変更のほとんどを Kotlin で⾏うことになるので、チームは
常に Kotlinに触れ続けることになります。Kotlinでどのように書くかについて
考えたり議論したりしやすいので、学習の効率は良いでしょう。また、プロダ
クションコードにおいて Kotlin の価値をすぐに享受でき、変更すればするほど
Kotlin化が進んで移⾏の負担が下がっていきます。

■デメリット 変更対象を Kotlin 化することで影響を受ける箇所が多数存在す
る場合、コンフリクトのリスクが⾼まり並⾏作業に影響が出やすいです。また
Javaとの連携部分についても意識を向ける必要があるため、壊れないようにメン
テナンスするコストが増⼤します。レビューにおいて Kotlinと Javaの両⽅を読
むことになるのでレビュアーの負担は増⼤します。また Kotlin 化を進めるなか
で複雑過ぎて Kotlin化できない領域が発⽣し、完全な Kotlin化になかなか⾄ら
ない可能性が⾼いです。
混在させるアプローチをとるのは正直かなり危険だと筆者は考えます。新規
コードではなく、単純な POJO などから置き換えるということも考えられます
が、これも結局 Kotlin化されない部分が発⽣してメンテナンスコストが増⼤した
ままになるリスクがあります。

境界を設ける
次にテストやライブラリーなど、Kotlinで書く部分と Javaで書く部分の境界

を設けるアプローチを考えてみます。

第 2章 Kotlinを学ぶ 62

テストから導⼊する
プロジェクトのテストコードを Kotlin で書くというアプローチです。テスト
コードを⼀気に全部 Kotlinにしても、徐々に導⼊しても構いません。

■メリット プロダクションコードに Kotlinを含めないので、もし壊れたとして
も安全です。⼤胆に導⼊が可能となり、学習の効率は良いでしょう。テストコー
ドにおいて Kotlinの価値をすぐに享受できます。

■デメリット プロジェクト全体で⾒ると Java と Kotlin が混在していること
に変わりはなく、レビューの負担は⾼まります。また、テストとプロダクション
コードで Kotlinと Javaをスイッチして考える必要があるので負担が⾼く、だん
だんテストを書かなくなってしまうといったリスクが考えられます。
いきなり混在して書くアプローチよりは⼤分まともです。テストの他に分割し
たモジュールを Kotlin で書くといったことも考えられます。どちらかというと
学習が主な⽬的となり、置き換えは別のアプローチを検討することになります。

ライブラリーを Kotlinで書いて導⼊する
プロダクトで使うライブラリーを Kotlinで書いて導⼊するアプローチです。

■メリット 独⽴して開発をするので、テストから導⼊するケースに⽐べてさら
に⾃由度が増します。プロジェクト全体が Kotlinなので、開発中は Kotlinに集
中できます。

■デメリット ライブラリー化すべきテーマを適切に探すのは簡単ではありませ
ん。ライブラリーを利⽤するプロダクションコード側は Javaなので、Javaから
Kotlinを利⽤する際の注意点に対処する必要があります。ライブラリーが完成す
るまでにある程度時間がかかるので、プロダクション側で恩恵を受ける距離は少
し遠いです。ライブラリーを⼀部の⼈が書くといった状態になると学習に偏りが
⽣じてしまいます。
テーマさえ⾒つかれば、ライブラリーを Kotlinで作るアプローチは学習と実益
を兼ねていてとても良いと思います。

第 2章 Kotlinを学ぶ 63

置き換える
最後に⼀気にプロジェクト全体を Kotlin に置き換えるアプローチを考えてみ
ます。

プロジェクト全体を⼀気に Kotlinに置き換える
実は Kotlinプラグインが提供する、Javaを Kotlinに変換する機能はプロジェ
クト全体にも適⽤できます。プロジェクトのファイルツリーでディレクトリーを
選択した状態で Kotlin への変換を実⾏すると、そのディレクトリー配下のすべ
ての Javaファイルを Kotlinに変換できます。ただしこの⽅法はあまりうまくい
くことはありません。Java から Kotlin の変換機能は、あくまで Java の⽂法を
Kotlinに置き換えるに過ぎず、適切な設計になるわけではないからです。ほとん
どの場合、Null許容型の境界の問題がアプリケーション全体に氾濫し、収拾がつ
かなくなるでしょう。ここでは変換機能を活⽤しつつ全体を⼿動で置き換えてい
くケースを想定します。

■メリット 他の⽅法に⽐べると最短で Kotlinへの移⾏ができます。Javaと混
在するケースのように Javaから Kotlinを呼び出すケースを考える必要がないの
で、その分のメンテナンスコストはなくなります。

■デメリット 学習を想定していないので、チームがすでに Kotlinを使いこなせ
るか、圧倒的にリードする⼈間が必要になります。
現実的には、テストやライブラリーに Kotlinを導⼊して学習をし、その後⼀気
にプロダクションコードを置き換えるという戦略が⼀番コストが低いのではない
かと思います。

Kotlinから Javaを利⽤する
プロジェクトを Kotlin に⼀気に置き換えるにせよ、部分的に置き換えるにせ
よ、既存の Javaライブラリーを利⽤するときに Kotlinと Javaの境界を意識す
ることになります。本項では、Kotlinから Javaを利⽤するときに意識する必要

第 2章 Kotlinを学ぶ 64

がある点について解説します。

識別⼦をエスケープする
Java では予約語ではないが、Kotlin では予約語というキーワードがいくつか

存在します。in、object、isなどです。
Javaのクラスがこうした Kotlinの予約語と衝突するようなフィールドや関数
を持っていた場合、次のようにバッククォートでエスケープして呼び出します。

リスト 2.89: Kotlinの予約語をエスケープする

foo.`is`(bar)

nullとプラットフォーム型
Java には Null 許容型という概念がありません。Java の参照型は常に null に

なる可能性があります。この性質は Kotlin から制御することはできないので、
Java側で宣⾔しているフィールドや関数の戻り値の型は、プラットフォーム型と
して特別な扱いを受けます。具体的には nullチェックが緩和されて、Java と同
じ様なふるまいになります。
たとえば Activityの �ndViewById関数を例に考えてみましょう。Activityの

�ndViewById関数は Javaの関数なので、戻り値はプラットフォーム型となりま
す。プラットフォーム型は Null許容型か⾮ Null型かが曖昧なため、リスト 2.90

のように利⽤者が宣⾔時に決めることになります。

リスト 2.90: �ndViewById関数とプラットフォーム型

val text = findViewById(R.id.text) as TextView

text.id

val text2 = findViewById(R.id.text) as TextView?

text2?.id

第 2章 Kotlinを学ぶ 65

もし �ndViewById関数が Viewを返せば両者は正しく動作します。nullを返
せば TextViewで宣⾔した⽅は、text.idの箇所で NullPointerExceptionをス
ローします。
この性質は厄介です。実⾏しなければプラットフォーム型が実際に

null になるかどうか分からないからです。こうした曖昧な宣⾔を回避す
るために、org.jetbrains.annotations.Nullable アノテーションと
org.jetbrains.annotations.NotNull アノテーションが⽤意されています。
Java側でこれらのアノテーションが適切に宣⾔されていれば、プラットフォーム
型になることを回避できます。

検査例外の取扱い
Kotlinは Javaの検査例外をリスト 2.91のように無視します。

リスト 2.91: 検査例外を無視する

val file = File("not found")

val inputStream = file.inputStream() // FileNotFoundException

もちろん例外がスローされないわけではないので、適宜 try-catch式を書くこ
とになります。

Class<T>型を参照する
Kotlinから Class<T>型を参照するにはリスト 2.92のように書きます。

リスト 2.92: Class 型を参照する

// クラスから取り出す
val clazz : Class<File> = File::class.java

// インスタンスから取り出す

第 2章 Kotlinを学ぶ 66

val file = File(".")

val clazz : Class<File> = file.javaClass

ラムダ式と SAMインターフェースの変換
Kotlin は Java の関数の引数が SAM インターフェース（Single Abstract

Method Interface）の場合、ラムダ式を⾃動的に SAMインターフェースに変換
してくれます。
たとえば Threadクラスはコンストラクターで Runnableインターフェースを
受け取ります。Runnableインタフェースは run関数をひとつだけもつ SAMイ
ンターフェースです。SAMインターフェースの⾃動変換によってリスト 2.93の
ように、ラムダ式で Runnableの実装を渡せます。

リスト 2.93: SAMインターフェースの変換の例

val thread = Thread {

Log.d("kotlin", "hello")

}

この性質は Java の SAM インターフェースに対してのみ動作する点に注意す
る必要があります。SAMインターフェースだとしても Kotlinで宣⾔しているイ
ンターフェースの場合、⾃動変換の対象にはなりません。

Javaから Kotlinを利⽤する
Javaと Kotlinを混在させるケースや、ライブラリーを Kotlinで書いて導⼊す
るケースでは、Javaから Kotlinを利⽤する場合への対処が必要になります。本
項では、Javaから Kotlinを利⽤するときに知っておくと良い点について解説し
ます。

第 2章 Kotlinを学ぶ 67

プロパティにアクセスする
Kotlinのプロパティには暗黙的に getter、setterが実装されています。Javaか
ら Kotlin のクラスのプロパティへのアクセスは、リスト 2.94 のように getter、
setterを通して⾏います。

リスト 2.94: プロパティへのアクセス

// Kotlin

class User(val id: Long, var name: String)

// Java

User user = new User(1L, "taro");

user.getId(); // 1L

user.getName(); // "taro"

user.setName("jiro");

プロパティのフィールドに直接アクセスする
プロパティの実体であるバッキングフィールドは、プロパティの可視性にかか
わらず常に privateで宣⾔されているので、直接触れることはできません。プロ
パティのバッキングフィールドに直接触れたいという場合は、@JvmField アノ
テーションを使います。
リスト 2.95のようにプロパティの宣⾔に@JvmFieldアノテーションを付与す
ると、getter、setterを⽣成する代わりにバッキングフィールドを publicで宣⾔
します。

リスト 2.95: @JvmField アノテーションをプロパティに設定する

// Kotlin

class User(@JvmField val id: Long, var name: String)

// Java

User user = new User(1L, "taro");

第 2章 Kotlinを学ぶ 68

user.id; // 1L

プロパティに@JvmFieldアノテーションを付与した場合、プロパティに対する
カスタムアクセサーは定義できなくなります。また、アノテーションを付与する
には、private、open、const、overrideではなく、さらにデリゲートを使⽤し
ていないという条件があります。

パッケージレベルの関数
Kotlinはリスト 2.96のようにパッケージレベルで関数やプロパティを定義で
きます。

リスト 2.96: パッケージレベルで関数やプロパティを定義する

// Config.kt

package org.kotlinlang

val CLIENT_ID = "aaaa"

fun hello(){ /* ... */ }

これらの関数やプロパティはクラスに属していないように⾒えますが、実態と
しては Kotlinファイルの名前に接尾辞 Ktを付与したクラスの中に静的に宣⾔さ
れます。Java からパッケージレベルの関数やプロパティを使うにはリスト 2.97

のように書きます。

リスト 2.97: パッケージレベルの関数やプロパティを使う

ConfigKt.getCLIENT_ID(); // "aaaa"

ConfigKt.hello();

第 2章 Kotlinを学ぶ 69

オブジェクトやコンパニオンオブジェクトの関数やプロパティを静的にする
オブジェクトやコンパニオンオブジェクトはそれぞれシングルトンのインスタ
ンスが宣⾔されます。Kotlin上ではインスタンスへのアクセスを省略して静的に
アクセスしているように書けますが、Javaからはリスト 2.98のように実際のイ
ンスタンスを経由しなければなりません。

リスト 2.98: オブジェクトへのアクセス

// オブジェクト
// INSTANCEを経由する必要がある
DataProviderManager.INSTANCE.registerDataProvider(this);

// コンパニオンオブジェクト
// Companionを経由する必要がある
MainActivity.Companion.createIntent(context);

オブジェクトやコンパニオンオブジェクトの、関数やプロパティに@JvmStatic

アノテーションを付与することで、Java上で静的に宣⾔できます（リスト 2.99）。

リスト 2.99: @JvmStatic アノテーションを付与する

object DataProviderManager {

@JvmStatic

fun registerDataProvider(provider: DataProvider) {/* ... */}

}

class MainActivity : AppCompatActivity() {

companion object {

@JvmStatic

fun createIntent(context: Context): Intent {

//...

}

}

}

第 2章 Kotlinを学ぶ 70

リスト 2.100のようにスッキリと記述できるようになります。

リスト 2.100: オブジェクトやコンパニオンオブジェクトに静的にアクセスする

DataProviderManager.registerDataProvider(this);

MainActivity.createIntent(context);

拡張関数を呼び出す
たとえばリスト 2.101のような拡張関数があるとします。

リスト 2.101: IntExtensions.kt

package org.kotlinlang

fun Int.reversed(): Int {

return this.toString().reversed().toInt()

}

Kotlinからはリスト 2.102のように拡張関数を呼び出します。

リスト 2.102: Kotlinで拡張関数を使う

234.reversed() // 432

Kotlin上では拡張関数の対象のクラスに関数が増えたように⾒えますが、実際
はリスト 2.103のように、対象のクラスを第⼀引数に取る関数が宣⾔されます。

リスト 2.103: IntExtensionsKtクラス

package org.kotlinlang

public final class IntExtensionsKt {

第 2章 Kotlinを学ぶ 71

public static final int reversed(int $receiver) {

// ...

}

}

ですので、Javaから拡張関数を呼び出す時はリスト 2.104のように書きます。

リスト 2.104: Int.reversed()を使う

IntExtensionsKt.reversed(234); // 432

関数のオーバーロード
関数がデフォルト引数を持っているとき、Kotlin 上ではその関数がオーバー

ロードしているように⾒えます（リスト 2.105）。

リスト 2.105: デフォルト引数を持つ関数

class UserRepository {

fun get(id: Int, param: String = ""): User {

return User(1, "")

}

}

val repository = UserRepository()

// オーバーロードしているように⾒える
repository.get(10)

repository.get(10, "page=10")

しかし Javaからは引数をフルセットで渡す必要があります（リスト 2.106）。

リスト 2.106: Java からは常に引数がフルセット必要になる

第 2章 Kotlinを学ぶ 72

UserRepository repository = new UserRepository();

repository.get(10, "page=10");

デフォルト引数をもつ Kotlin の関数をオーバーロードさせるには、
@JvmOverloadsアノテーションを使います（リスト 2.107）。

リスト 2.107: @JvmOverloadsアノテーションを使う

class UserRepository {

@JvmOverloads

fun get(id: Int, param: String = ""): User {

return User(1, "")

}

}

これで実際にオーバーロードした関数を Java から呼び出せます（リスト
2.108）。

リスト 2.108: オーバーロードした関数を使う

UserRepository repository = new UserRepository();

repository.get(10); // OK

repository.get(10, "page=10");

本当に移⾏するべきなのかどうか
本節では Java で書いている Android アプリケーションを Kotlin に移⾏する

ためのアプローチや、Kotlinと Javaを相互に利⽤する際に知っておくとよい知
識について解説しました。
Javaから Kotlinへ移⾏することによって得られる恩恵は、プロダクトやチー

第 2章 Kotlinを学ぶ 73

ムや環境ごとに異なります。本節が移⾏のために必要なコストの試算や本当に移
⾏するべきかどうかの判断の⼀助になれば幸いです。

74

第 3章

次のステップ

3.1 学習⽅法
この節では、Kotlinのはじめの⼀歩を踏み出すための学習⽅法を紹介します。
Web上には Kotlinに関する素晴らしいブログやプレゼン資料が多くあります
が、その資料がどのバージョンの Kotlinについて⾔及しているのかにまず注意し
てください。正式リリース前は⾔語仕様の変更も多くあったので、古い情報は参
考にならない場合もあります。
英語に抵抗のない⽅におすすめな⽅法は、公式ページ*1です。⽂法・ライブラ

リーなどの解説はもちろん、FAQは⼀度⽬を通すことを強くおすすめします。
Kotlinの最新の情報を追いたいという場合は、Kotlin Weekly*2という週単位

でのニュースや Kotlinの Podcast*3もおすすめです。こちらも英語です。
⽇本語で Kotlinについて学びたい⽅におすすめなのは、書籍「Kotlinスター
トブックー新しい Androidプログラミングー（2016）⻑澤太郎著 リックテレコ
ム」です。第 1部の「初めてのKotlin」では概要が、第 2部で「Kotlin⽂法詳解」
では⾔語機能・⽂法が、第 3部「サンプルプログラミング」では Kotlinを使った
Android 開発の例が紹介されています。⾃称 Kotlin エバンジェリストである著

*1 https://kotlinlang.org/

*2 http://www.kotlinweekly.net/

*3 http://talkingkotlin.com/

https://kotlinlang.org/
http://www.kotlinweekly.net/
http://talkingkotlin.com/

第 3章 次のステップ 75

者の豊富な Kotlinと Android開発経験を元に書かれたこの書籍は、Android開
発者が Kotlinの学習の第⼀歩を踏み出す⼼強い⾒⽅になるでしょう。
実際に⼿を動かして学習したい⽅におすすめな⽅法は、Kotlin Koans online*4

です。ブラウザーに提⽰されたコードに⼿を加えて、テストを通るようにする
チュートリアルです。チュートリアルの説明は英語ですが、プログラミング⽂法
に関する短い説明⽂ですので怖からずチャレンジしてみてください。
その他、Web上には Kotlinに関する素晴らしいブログやプレゼン資料が多く

あります。
「Kotlin⼊⾨までの助⾛読本」としておすすめのブログをひとつ挙げるとすれ
ば、藤原聖の「Google I/O 2017 : Introduction to Kotlin（和訳/要約）*5」です。
Google I/O 2017の Kotlinにまつわる内容を⽇本語で確認できる記事です。
「Kotlin ⼊⾨までの助⾛読本」の範囲は超えますが、より実践的で・詳しい内
容が知りたいあなたは 2016年の Kotlinアドベントカレンダー*6などもおすすめ
です。
繰り返しになりますが、記事や資料がどの Kotlinのバージョンについて⾔及し
ているか、まず注意してみてください。

3.2 コミュニティ
学習を進めるために、コミュニティとその仲間たちの存在は良いモチベーショ
ンになります。国内の Kotlin 界隈のコミュニティ事情はどのようになっている
のでしょうか？
まず紹介するのは我々⽇本 Kotlin ユーザグループ（通称 JKUG）*7です。お
そらく⽇本最古・最⼤⼈数のKotlinコミュニティでしょう。また、世界のKotlin

ユーザグループ名簿*8に名を連ねています。Kotlin の発展や普及および知識共
有を⽬的としており、勉強会の開催にとどまらず、⽇本語で Kotlin を語り合う

*4 https://try.kotlinlang.org

*5 http://qiita.com/satorufujiwara/items/490c1499acec1a921258

*6 http://qiita.com/advent-calendar/2016/kotlin

*7 https://kotlin.connpass.com/

*8 http://kotlinlang.org/community/user-groups.html

https://try.kotlinlang.org
http://qiita.com/satorufujiwara/items/490c1499acec1a921258
http://qiita.com/advent-calendar/2016/kotlin
https://kotlin.connpass.com/
http://kotlinlang.org/community/user-groups.html

第 3章 次のステップ 76

Slack*9を管理したり、本書のような執筆プロジェクトを実施したりしています。
JKUGは現在のところ東京中⼼の活動ですが、Kansai.kt*10は関⻄を活動拠

点とする Kotlinコミュニティです。
企業による Kotlin 勉強会の開催も多くあります。Sansan 株式会社による

Kotlin 勉強会*11は、すでに 5 回開催されている⽐較的歴史の⻑い勉強会です。
本書の筆者である Sansanエンジニアの⼭本と、ゲストスピーカーとして⻑澤は
毎回登壇しており、参加者からライトニングトークを募集するスタイルの勉強会
です。
株式会社サイバーエージェントの Kotlin 勉強会である「CA.kt*12」がスター
トします。第 1回が 2017年 6⽉ 15⽇に開催されます。執筆時（2017年 5⽉ 25

⽇）現在で、定員 100⼈に対し 186⼈の参加希望者が集まっています。第 1回は
ゲストスピーカーとして⻑澤が登壇し、サイバーエージェントのエンジニアとし
て本書執筆陣の中からは藤原と荒⾕が登壇する予定です。勉強会以降に発表資料
が公開されるでしょうから、残念ながら参加できない⼈も要チェックです。
世界中の Kotlinファンと交流したいのならば、本家 Slack*13がおすすめです。
また、今年 2017 年の 11 ⽉ 2 ⽇と 3 ⽇にサンフランシスコで Kotlin Conf*14

という Kotlinカンファレンスが開催されます。

3.3 次回リリースの予告
今回のリリースが最初で最後というわけではありません。継続して（少なくと
も、あと 1回以上は）新バージョンをリリースしようと計画しています。という
のは、今回スピード重視で執筆にあたりました。内容の正確さには⾃信を持って
いますが、完全性や読みやすさという観点で粗が少なくないと思っています。次
回以降で扱う範囲を増やし、構成や⽂章などにも磨きをかけていきたいです。

*9 http://kotlinlang-jp.herokuapp.com

*10 https://kansai-kt.connpass.com/

*11 https://sansan.connpass.com/

*12 https://cyberagent.connpass.com/event/57963/

*13 http://slack.kotlinlang.org/

*14 https://www.kotlinconf.com/

http://kotlinlang-jp.herokuapp.com
https://kansai-kt.connpass.com/
https://sansan.connpass.com/
https://cyberagent.connpass.com/event/57963/
http://slack.kotlinlang.org/
https://www.kotlinconf.com/

第 3章 次のステップ 77

特に、今回のリリースでは含まれていない次のトピックを、次バージョンで解
説する予定です。

� スコープ関数とその応⽤例
� キャスト
� デリゲーション

なお、本書はあくまで「⼊⾨までの助⾛」にフォーカスしています。あえて紹
介しない Kotlinの⽂法や機能もあるでしょう。本章で⽰した「次のステップ」で
Kotlinマスターへの道を歩んでください。

78

参考⽂献

[1] Kotlin native repository, GitHub

https://github.com/JetBrains/kotlin-native

[2] The Advent of Kotlin: A Conversation with JetBrains' Andrey Breslav',

Oracle

http://www.oracle.com/technetwork/articles/java/breslav-1932170.html

[3] JVM Languages Report extended interview with Kotlin creator Andrey

Breslav, ZEROTURNAROUND

https://zeroturnaround.com/rebellabs/jvm-languages-report-extended-

interview-with-kotlin-creator-andrey-breslav/

[4] Compilation speed, Kotlin discuss

https://discuss.kotlinlang.org/t/compilation-speed/650/2

[5] Kotlin vs Java: Compilation speed, keepsafe

https://medium.com/keepsafe-engineering/kotlin-vs-java-compilation-

speed-e6c174b39b5d

[6] Kotlinスタートブック ⻑澤太郎著 リックテレコム

79

著者⼀覧

本書の著者を紹介します（名前昇順）。⾃分たちで⾔うのもなんですが、
粒揃いの精鋭です！

Abe Asami（きの⼦）
� Twitter: @aa7th

� ブログ: http://nocono.net/

⼤阪でフリーランスプログラマやってます。Scala関⻄や関⻄ Java⼥⼦部の主
催もやってます。ゲームとマンガと⾳楽（ロック）が⼤好き。ビールが好きだけ
ど、糖質を気にして最近 1杯⽬は⼤体ハイボール。

 
あらたに
荒⾕   

あきら
光 

� Twitter: @_a_akira

� ブログ: http://aakira.hatenablog.com

株式会社サイバーエージェントの Androidエンジニア。デザインも好き。藤原
さんと共に FRESH!というサービスの⽴ち上げ期から今も FRESH!を Kotlinで
開発しているので、単純 Kotlin プレイ時間は多分この中でも⻑い⽅。毎⽇の為
替グラフと毎週末の軟式テニスが楽しい。お酒は弱いのでビールは 1, 2杯飲みま
す。しらふでも酔ってる⼈のテンションに合わせられるので問題ないです。

http://nocono.net/
http://aakira.hatenablog.com

付録 著者⼀覧 80

 
いそがい
磯⾙   

よしのり
佳典 

� Twitter: @shiraj_i

� ブログ: http://shiraji.github.io

Kotlin コントリビュータ。株式会社アシックスでスマホアプリやサーバサイ
ド開発に関わっています。ビールよりカクテル派。飲むと声が余計にでかくなり
ます。

 
ながさわ
⻑澤   

たろう
太郎 

� Twitter: @ngsw_taro

� ブログ: http://taro.hatenablog.jp

⾃称 Kotlinエバンジェリストで⽇本 Kotlinユーザグループ代表。エムスリー
株式会社でソフトウェアエンジニアとして、世界の医療を変⾰するため⽇々励ん
でいます。静かなビーチで冷たいビールが飲みたい。

 
ふ じ た
藤⽥   

たくま
琢磨 

� Twitter: @magie_pooh

モバイルアプリ開発エキスパート養成読本で Kotlin の章を書いたりしてまし
た。普段は株式会社 FOLIOで AndroidやWebフロントと戯れています。ビー
ルは主に欧州（特にベルギービール）が専⾨。⾃宅には常時 20種程のビールを⽤
意しています。

 
ふじわら
藤原   

さとる
聖 

� Twitter: @satorufujiwara

株式会社サイバーエージェントの Androidエンジニア。FRESH!というサービ
スの⽴ち上げを期に、2015年から Kotlinで開発しています。Shibuya.apkとい

http://shiraji.github.io
http://taro.hatenablog.jp

付録 著者⼀覧 81

う Android 開発者コミュニティのオーガナイザーの 1 ⼈。ビールも好きですが
⽇本酒が好きです。

 
むろほし
室星   

りょうた
亮太 

� Twitter: @RyotaMurohoshi

� ブログ: http://mrstar-logs.hatenablog.com/

フラー株式会社所属プログラマ。Jorenというサービスで Kotlinを導⼊。趣味
はゲーム開発。Microsoft MVP for Visual Studio and Development Technolo-

gies 2016/10/01~。ビールも⽇本酒も好きなんですが最近お腹が。。。

 
や ぎ
⼋⽊   

としひろ
俊広 

� Twitter: @sys1yagi

� ブログ: http://sys1yagi.hatenablog.com

WEB+DB PRESS Vol.94で Kotlin特集書いたりしました。普段は株式会社
トクバイで Androidエンジニア 兼 技術部⻑やってます。ノンアルコールビール
はパフォーマンスが落ちないので便利。

 
やまもと
⼭本   

じゅんぺい
純 平 

� Twitter: @boohbah

Sansan株式会社で Eightというアプリの Android版を作っています。Kotlin
勉強@Sansanを主催しています。最後までビールでいける派。

yy_yank（やんく）
� Twitter: @yy_yank

� ブログ: http://yyyank.blogspot.jp

Java プログラマです。Abby という会社で働いてます。たまに⽇本 Kotlin

http://mrstar-logs.hatenablog.com/
http://sys1yagi.hatenablog.com
http://yyyank.blogspot.jp

付録 著者⼀覧 82

ユーザーグループのお⼿伝いとかしてます。美味しかったお酒の名前を忘れるの
が特技です。ビールは忘れにくいので好きです。

Kotlin⼊⾨までの助⾛読本

2017年 5⽉ 29⽇ 初版第 1刷 発⾏
著 者 Abe Asami(きの⼦)、荒⾕ 光、磯⾙ 佳典、⻑澤 太郎、藤⽥ 琢磨、藤原 聖、室星 亮太、⼋⽊ 俊広、⼭本 純平、yy_yank(やんく)
印刷所 ⽇本 Kotlinユーザグループ

 

	はじめに
	第1章 Kotlinについて知る
	1.1 Kotlinとは
	1.2 Kotlinを使うと何が嬉しいのか
	1.3 Kotlinの特徴
	1.4 将来の展望
	1.5 導入事例

	第2章 Kotlinを学ぶ
	2.1 環境構築からHelloWorldまで
	2.2 Kotlinの味見
	2.3 JavaからKotlinへの移行

	第3章 次のステップ
	3.1 学習方法
	3.2 コミュニティ
	3.3 次回リリースの予告

	参考文献
	著者一覧

